Previous |  Up |  Next

Article

Title: Reducibility and irreducibility of Stern $(0,1)$-polynomials (English)
Author: Dilcher, Karl
Author: Ericksen, Larry
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 22
Issue: 1
Year: 2014
Pages: 77-102
Summary lang: English
.
Category: math
.
Summary: The classical Stern sequence was extended by K.B. Stolarsky and the first author to the Stern polynomials $a(n;x)$ defined by $a(0;x)=0$, $a(1;x)=1$, $a(2n;x)=a(n;x^2)$, and $a(2n+1;x)=x\,a(n;x^2)+a(n+1;x^2)$; these polynomials are Newman polynomials, i.e., they have only 0 and 1 as coefficients. In this paper we prove numerous reducibility and irreducibility properties of these polynomials, and we show that cyclotomic polynomials play an important role as factors. We also prove several related results, such as the fact that $a(n;x)$ can only have simple zeros, and we state a few conjectures. (English)
Keyword: Stern sequence
Keyword: Stern polynomials
Keyword: reducibility
Keyword: irreducibility
Keyword: cyclotomic polynomials
Keyword: discriminants
Keyword: zeros
MSC: 11B83
MSC: 11R09
idZBL: Zbl 06359725
idMR: MR3233729
.
Date available: 2014-08-27T09:04:21Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143908
.
Reference: [1] Dilcher, K., Ericksen, L.: The polynomials of Mahler and roots of unity.Amer. Math. Monthly. (To appear)..
Reference: [2] Dilcher, K., Ericksen, L.: Identities and restricted quotients in the Stern sequence.(In preparation)..
Reference: [3] Dilcher, K., Stolarsky, K.B.: A polynomial analogue to the Stern sequence.Int. J. Number Theory, 3, 1, 2007, 85-103, Zbl 1117.11017, MR 2310494, 10.1142/S179304210700081X
Reference: [4] Dilcher, K., Stolarsky, K.B.: Stern polynomials and double-limit continued fractions.Acta Arith., 140, 2, 2009, 119-134, Zbl 1250.11016, MR 2558448, 10.4064/aa140-2-2
Reference: [5] Filaseta, M., Ford, K., Konyagin, S: On an irreducibility theorem of A. Schinzel associated with coverings of the integers.Illinois J. Math., 44, 3, 2000, 633-643, Zbl 0966.11046, MR 1772434
Reference: [6] Filaseta, M., (Jr.), M. Matthews: On the irreducibility of 0,1-polynomials of the form $f(x)x^n+g(x)$.Colloq. Math., 99, 1, 2004, 1-5, Zbl 1060.11066, MR 2084532, 10.4064/cm99-1-1
Reference: [7] Finch, C., Jones, L.: On the irreducibility of ${-1,0,1}$-quadrinomials.Integers, 6, 2006, A16, 4 pp.. Zbl 1094.11013, MR 2247810
Reference: [8] Klavžar, S., Milutinović, U., Petr, C.: Stern polynomials.Adv. in Appl. Math., 39, 2007, 86-95, Zbl 1171.11016, MR 2319565, 10.1016/j.aam.2006.01.003
Reference: [9] Lehmer, D.H.: On Stern's diatomic series.Amer. Math. Monthly, 36, 1929, 59-67, MR 1521653, 10.2307/2299356
Reference: [10] Ljunggren, W.: On the irreducibility of certain trinomials and quadrinomials.Math. Scand., 8, 1960, 65-70, Zbl 0095.01305, MR 0124313
Reference: [11] Mahler, K.: On the zeros of a special sequence of polynomials.Math. Comp., 39, 159, 1982, 207-212, Zbl 0486.30003, MR 0658225, 10.1090/S0025-5718-1982-0658225-3
Reference: [12] Mercer, I.: Newman polynomials, reducibility, and roots on the unit circle.Integers, 12, 2012, 503-519, Zbl 1279.12002, MR 2988531, 10.1515/integers-2011-0120
Reference: [13] Mills, W.H.: The factorization of certain quadrinomials.Math. Scand., 57, 1985, 44-50, MR 0815429
Reference: [14] Murty, M.R.: Prime numbers and irreducible polynomials.Amer. Math. Monthly, 109, 2002, 452-458, Zbl 1053.11020, MR 1901498, 10.2307/2695645
Reference: [15] (2011), OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences.http://oeis.org
Reference: [16] Rivlin, T.J.: Chebyshev Polynomials, second edition.1990, Wiley, New York, MR 1060735
Reference: [17] Schinzel, A.: On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas).Publ. Math. Debrecen, 79, 1--2, 2011, 83-88, Zbl 1274.11067, MR 2850035
Reference: [18] Selmer, E.S.: On the irreducibility of certain trinomials.Math. Scand., 4, 1956, 287-302, Zbl 0077.24602, MR 0085223
Reference: [19] Tuckerman, B.: Factorization of $x^{2n}+x^n+1$ using cyclotomic polynomials.Math. Magazine, 42, 1, 1969, 41-42, MR 1571793, 10.2307/2688041
Reference: [20] Ulas, M.: On certain arithmetic properties of Stern polynomials.Publ. Math. Debrecen, 79, 1--2, 2011, 55-81, Zbl 1274.11068, MR 2850034, 10.5486/PMD.2011.4922
Reference: [21] Vargas, A.R.: Zeros and convergent subsequences of Stern polynomials.J. Math. Anal. Appl., 398, 2013, 630-637, Zbl 1271.11027, MR 2990088, 10.1016/j.jmaa.2012.09.035
Reference: [22] Weisstein, E.W.: Cyclotomic Polynomial.From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CyclotomicPolynomial.html.
.

Files

Files Size Format View
ActaOstrav_22-2014-1_7.pdf 629.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo