Previous |  Up |  Next


a posteriori error estimation; quasilinear elliptic problem; numerical experiment
Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate solution of the involved auxiliary problem.
[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts Chichester, Wiley (2000). MR 1885308 | Zbl 1008.65076
[2] Axelsson, O., Maubach, J.: On the updating and assembly of the Hessian matrix in finite element methods. Comput. Methods Appl. Mech. Eng. 71 (1988), 41-67. DOI 10.1016/0045-7825(88)90095-3 | MR 0967153 | Zbl 0673.65068
[3] Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996), 237-264. MR 1430239 | Zbl 0868.65076
[4] Brezinski, C.: A classification of quasi-Newton methods. International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001). Numer. Algorithms 33 123-135 (2003). DOI 10.1023/A:1025551602679 | MR 2005557 | Zbl 1030.65053
[5] Faragó, I., Karátson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications. Advances in Computation: Theory and Practice 11 Nova Science Publishers, Huntington (2002). MR 2106499 | Zbl 1030.65117
[6] Faragó, I., Karátson, J.: The gradient-finite element method for elliptic problems. Numerical Methods and Computational Mechanics (Miskolc, 1998). Comput. Math. Appl. 42 1043-1053 (2001). DOI 10.1016/S0898-1221(01)00220-6 | MR 1851224 | Zbl 0987.65121
[7] Han, W.: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics 8 Springer, New York (2005). MR 2101057 | Zbl 1081.65065
[8] Hannukainen, A., Korotov, S.: Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems. Far East J. Appl. Math. 21 289-304 (2005). MR 2216003 | Zbl 1092.65097
[9] Hlaváček, I., Křížek, M.: On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary condition. Apl. Mat. 32 131-154 (1987). MR 0885758 | Zbl 0622.65097
[10] Karátson, J.: On the Lipschitz continuity of derivatives for some scalar nonlinearities. J. Math. Anal. Appl. 346 170-176 (2008). DOI 10.1016/j.jmaa.2008.05.053 | MR 2428281 | Zbl 1152.47047
[11] Karátson, J., Faragó, I.: Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space. SIAM J. Numer. Anal. (electronic) 41 1242-1262 (2003). DOI 10.1137/S0036142901384277 | MR 2034879 | Zbl 1130.65309
[12] Karátson, J., Korotov, S.: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems. Appl. Math., Praha 54 297-336 (2009). DOI 10.1007/s10492-009-0020-x | MR 2520833 | Zbl 1212.65249
[13] Karátson, J., Kovács, B.: Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation. Comput. Math. Appl. 65 (2013), 449-459. DOI 10.1016/j.camwa.2012.04.021 | MR 3008551
[14] Korotov, S.: Global a posteriori error estimates for convection-reaction-diffusion problems. Appl. Math. Modelling 32 (2008), 1579-1586. DOI 10.1016/j.apm.2007.04.013 | MR 2412433 | Zbl 1176.65126
[15] Kovács, B.: A comparison of some efficient numerical methods for a nonlinear elliptic problem. Cent. Eur. J. Math. 10 217-230 (2012). DOI 10.2478/s11533-011-0071-6 | MR 2863792 | Zbl 1247.65148
[16] Mikhlin, S. G.: Constants in Some Inequalities of Analysis. Transl. from the German. A Wiley-Interscience Publication John Wiley & Sons, Chichester (1986). MR 0853915 | Zbl 0593.41001
[17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates. Studies in Mathematics and its Applications 33 Elsevier, Amsterdam (2004). MR 2095603 | Zbl 1076.65093
[18] Repin, S. I.: A posteriori error estimation for nonlinear variational problems by duality theory. J. Math. Sci., New York 99 927-935 (2000), Transl. from the Russian. Zap. Nauchn. Semin. POMI 243 (1997), 201-214. DOI 10.1007/BF02673600 | MR 1629741 | Zbl 0904.65064
[19] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Stuttgart, Chichester (1996).
[20] Vladimirov, V. S.: Equations of Mathematical Physics. Transl. from the Russian. Mir, Moskva (1984). MR 0764399
[21] Zeidler, E.: Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization. Transl. from the German by Leo F. Boron Springer, New York (1985). MR 0768749 | Zbl 0583.47051
Partner of
EuDML logo