Previous |  Up |  Next

Article

Title: On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems (English)
Author: Kovács, Balázs
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 5
Year: 2014
Pages: 489-508
Summary lang: English
.
Category: math
.
Summary: Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate solution of the involved auxiliary problem. (English)
Keyword: a posteriori error estimation
Keyword: quasilinear elliptic problem
Keyword: numerical experiment
MSC: 65J15
MSC: 65M60
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06391447
idMR: MR3255792
DOI: 10.1007/s10492-014-0068-0
.
Date available: 2014-09-29T08:55:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143926
.
Reference: [1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts Chichester, Wiley (2000). Zbl 1008.65076, MR 1885308
Reference: [2] Axelsson, O., Maubach, J.: On the updating and assembly of the Hessian matrix in finite element methods.Comput. Methods Appl. Mech. Eng. 71 (1988), 41-67. Zbl 0673.65068, MR 0967153, 10.1016/0045-7825(88)90095-3
Reference: [3] Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples.East-West J. Numer. Math. 4 (1996), 237-264. Zbl 0868.65076, MR 1430239
Reference: [4] Brezinski, C.: A classification of quasi-Newton methods.International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001). Numer. Algorithms 33 123-135 (2003). Zbl 1030.65053, MR 2005557, 10.1023/A:1025551602679
Reference: [5] Faragó, I., Karátson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications.Advances in Computation: Theory and Practice 11 Nova Science Publishers, Huntington (2002). Zbl 1030.65117, MR 2106499
Reference: [6] Faragó, I., Karátson, J.: The gradient-finite element method for elliptic problems.Numerical Methods and Computational Mechanics (Miskolc, 1998). Comput. Math. Appl. 42 1043-1053 (2001). Zbl 0987.65121, MR 1851224, 10.1016/S0898-1221(01)00220-6
Reference: [7] Han, W.: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations.Advances in Mechanics and Mathematics 8 Springer, New York (2005). Zbl 1081.65065, MR 2101057
Reference: [8] Hannukainen, A., Korotov, S.: Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems.Far East J. Appl. Math. 21 289-304 (2005). Zbl 1092.65097, MR 2216003
Reference: [9] Hlaváček, I., Křížek, M.: On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary condition.Apl. Mat. 32 131-154 (1987). Zbl 0622.65097, MR 0885758
Reference: [10] Karátson, J.: On the Lipschitz continuity of derivatives for some scalar nonlinearities.J. Math. Anal. Appl. 346 170-176 (2008). Zbl 1152.47047, MR 2428281, 10.1016/j.jmaa.2008.05.053
Reference: [11] Karátson, J., Faragó, I.: Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space.SIAM J. Numer. Anal. (electronic) 41 1242-1262 (2003). Zbl 1130.65309, MR 2034879, 10.1137/S0036142901384277
Reference: [12] Karátson, J., Korotov, S.: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems.Appl. Math., Praha 54 297-336 (2009). Zbl 1212.65249, MR 2520833, 10.1007/s10492-009-0020-x
Reference: [13] Karátson, J., Kovács, B.: Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation.Comput. Math. Appl. 65 (2013), 449-459. MR 3008551, 10.1016/j.camwa.2012.04.021
Reference: [14] Korotov, S.: Global a posteriori error estimates for convection-reaction-diffusion problems.Appl. Math. Modelling 32 (2008), 1579-1586. Zbl 1176.65126, MR 2412433, 10.1016/j.apm.2007.04.013
Reference: [15] Kovács, B.: A comparison of some efficient numerical methods for a nonlinear elliptic problem.Cent. Eur. J. Math. 10 217-230 (2012). Zbl 1247.65148, MR 2863792, 10.2478/s11533-011-0071-6
Reference: [16] Mikhlin, S. G.: Constants in Some Inequalities of Analysis. Transl. from the German.A Wiley-Interscience Publication John Wiley & Sons, Chichester (1986). Zbl 0593.41001, MR 0853915
Reference: [17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates.Studies in Mathematics and its Applications 33 Elsevier, Amsterdam (2004). Zbl 1076.65093, MR 2095603
Reference: [18] Repin, S. I.: A posteriori error estimation for nonlinear variational problems by duality theory.J. Math. Sci., New York 99 927-935 (2000), Transl. from the Russian. Zap. Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741, 10.1007/BF02673600
Reference: [19] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Stuttgart, Chichester (1996).
Reference: [20] Vladimirov, V. S.: Equations of Mathematical Physics.Transl. from the Russian. Mir, Moskva (1984). MR 0764399
Reference: [21] Zeidler, E.: Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization.Transl. from the German by Leo F. Boron Springer, New York (1985). Zbl 0583.47051, MR 0768749
.

Files

Files Size Format View
AplMat_59-2014-5_1.pdf 345.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo