Previous |  Up |  Next

Article

Title: Spectral radius inequalities for positive commutators (English)
Author: Zima, Mirosława
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek (2010). Inequalities involving an arbitrary commutator and a generalized commutator are also discussed. (English)
Keyword: cone
Keyword: positive operator
Keyword: commutator
Keyword: spectral radius
MSC: 47A10
MSC: 47B47
MSC: 47B65
idZBL: Zbl 06391470
idMR: MR3247438
DOI: 10.1007/s10587-014-0077-x
.
Date available: 2014-09-29T09:25:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143941
.
Reference: [1] Bračič, J., Drnovšek, R., Farforovskaya, Y. B., Rabkin, E. L., Zemánek, J.: On positive commutators.Positivity 14 (2010), 431-439. Zbl 1205.47040, MR 2680506, 10.1007/s11117-009-0028-1
Reference: [2] Daneš, J.: On local spectral radius.Čas. Pěst. Mat. 112 (1987), 177-187. Zbl 0645.47002, MR 0897643
Reference: [3] Deimling, K.: Nonlinear Functional Analysis.Springer, Berlin (1985). Zbl 0559.47040, MR 0787404
Reference: [4] Drnovšek, R., Kandić, M.: More on positive commutators.J. Math. Anal. Appl. 373 (2011), 580-584. Zbl 1205.47041, MR 2720706, 10.1016/j.jmaa.2010.07.056
Reference: [5] Drnovšek, R.: Once more on positive commutators.Stud. Math. 211 (2012), 241-245. Zbl 1267.47062, MR 3002445, 10.4064/sm211-3-5
Reference: [6] Esajan, A. R.: Estimating the spectrum of sums of positive semi-commuting operators.Sib. Mat. J. 7 374-378 (1966), translation from Sib. Mat. Zh. 7 (1966), 460-464 Russian. MR 0194893
Reference: [7] Förster, K.-H., Nagy, B.: On the local spectral theory of positive operators.Special Classes of Linear Operators and Other Topics (Conference on operator theory, Bucharest, 1986) 71-81 Birkhäuser, Basel (1988). Zbl 0649.47001, MR 0942914
Reference: [8] Förster, K.-H., Nagy, B.: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. (Szeged) 55 (1991), 155-166. Zbl 0757.47002, MR 1124954
Reference: [9] Gao, N.: On commuting and semi-commuting positive operators.(to appear) in Proc. Am. Math. Soc., arXiv:1208.3495 [math.FA]. MR 3209328
Reference: [10] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5 Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [11] Kittaneh, F.: Spectral radius inequalities for Hilbert space operators.Proc. Am. Math. Soc. (electronic) 134 (2006), 385-390. Zbl 1081.47010, MR 2176006, 10.1090/S0002-9939-05-07796-8
Reference: [12] Kittaneh, F.: Norm inequalities for commutators of self-adjoint operators.Integral Equations Oper. Theory 62 (2008), 129-135. Zbl 1195.47008, MR 2442906, 10.1007/s00020-008-1605-6
Reference: [13] Kittaneh, F.: Norm inequalities for commutators of positive operators and applications.Math. Z. 258 (2008), 845-849. Zbl 1139.47009, MR 2369059, 10.1007/s00209-007-0201-9
Reference: [14] Krasnosel'skiĭ, M. A., Vaĭnikko, G. M., Zabreĭko, P. P., Rutitskii, Ya. B., Stetsenko, V. Ya.: Approximate Solution of Operator Equations.Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics Wolters-Noordhoff, Groningen (1972). MR 0385655
Reference: [15] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). Zbl 0957.47004, MR 1747914
Reference: [16] Riesz, F., S.-Nagy, B.: Functional Analysis.Dover Publications, New York (1990); Reprint of the 1955 orig. publ. by Ungar Publ. Co. MR 0071727
Reference: [17] Schaefer, H.: Some spectral properties of positive linear operators.Pac. J. Math. 10 (1960), 1009-1019. Zbl 0129.08801, MR 0115090, 10.2140/pjm.1960.10.1009
Reference: [18] Schaefer, H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften. Band 215 Springer, Berlin (1974). Zbl 0296.47023, MR 0423039
Reference: [19] Zima, M.: On the local spectral radius in partially ordered Banach spaces.Czech. Math. J. 49 (1999), 835-841. Zbl 1008.47004, MR 1746709, 10.1023/A:1022413403733
Reference: [20] Zima, M.: On the local spectral radius of positive operators.Proc. Am. Math. Soc. (electronic) 131 (2003), 845-850. Zbl 1055.47006, MR 1937422, 10.1090/S0002-9939-02-06726-6
Reference: [21] Zima, M.: Positive Operators in Banach Spaces and Their Applications.Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów (2005). Zbl 1165.47002, MR 2493071
.

Files

Files Size Format View
CzechMathJ_64-2014-1_1.pdf 243.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo