Previous |  Up |  Next

Article

Title: Counting graphs with different numbers of spanning trees through the counting of prime partitions (English)
Author: Azarija, Jernej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 31-35
Summary lang: English
.
Category: math
.
Summary: Let $A_n$ $(n \geq 1)$ be the set of all integers $x$ such that there exists a connected graph on $n$ vertices with precisely $x$ spanning trees. It was shown by Sedláček that $|A_n|$ grows faster than the linear function. In this paper, we show that $|A_{n}|$ grows faster than $\sqrt {n} {\rm e}^{({2\pi }/{\sqrt 3})\sqrt {n/\log {n}}}$ by making use of some asymptotic results for prime partitions. The result settles a question posed in J. Sedláček, On the number of spanning trees of finite graphs, Čas. Pěst. Mat., 94 (1969), 217–221. (English)
Keyword: number of spanning trees
Keyword: asymptotic
Keyword: prime partition
MSC: 05A16
MSC: 05C35
idZBL: Zbl 06391472
idMR: MR3247440
DOI: 10.1007/s10587-014-0079-8
.
Date available: 2014-09-29T09:29:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143945
.
Reference: [1] Azarija, J., Škrekovski, R.: Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees.Math. Bohem. 121-131 (2013), 138. Zbl 1289.05043, MR 3099303
Reference: [2] Flajolet, P., Sedgewick, R.: Analytic Combinatorics.Cambridge University Press Cambridge (2009). Zbl 1165.05001, MR 2483235
Reference: [3] Harary, F., Palmer, E. M.: Graphical Enumeration.Academic Press New York (1973). Zbl 0266.05108, MR 0357214
Reference: [4] Hardy, G. H., Ramanujan, S.: Asymptotic formulae in combinatory analysis.Proc. London Math. Soc. 17 (1917), 75-115. MR 1575586
Reference: [5] Roth, K. F., Szekeres, G.: Some asymptotic formulae in the theory of partitions.Q. J. Math., Oxf. II. Ser. 5 (1954), 241-259. Zbl 0057.03902, MR 0067913, 10.1093/qmath/5.1.241
Reference: [6] Sedláček, J.: On the number of spanning trees of finite graphs.Čas. Pěst. Mat. 94 (1969), 217-221. Zbl 0175.20902, MR 0250931
Reference: [7] Sedláček, J.: On the minimal graph with a given number of spanning trees.Can. Math. Bull. 13 (1970), 515-517. Zbl 0202.23501, MR 0272672, 10.4153/CMB-1970-093-0
Reference: [8] Sedláček, J.: Regular graphs and their spanning trees.Čas. Pěst. Mat. 95 (1970), 402-426. Zbl 0201.56902, MR 0282876
.

Files

Files Size Format View
CzechMathJ_64-2014-1_3.pdf 221.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo