Previous |  Up |  Next

Article

Title: A generalization of the finiteness problem of the local cohomology modules (English)
Author: Abbasi, Ahmad
Author: Roshan-Shekalgourabi, Hajar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 69-78
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012). (English)
Keyword: local cohomology module
Keyword: weakly Laskerian module
Keyword: ${\mathfrak a}$-weakly Laskerian module
Keyword: associated prime
MSC: 13C05
MSC: 13D45
MSC: 13E10
idZBL: Zbl 06391477
idMR: MR3247445
DOI: 10.1007/s10587-014-0084-y
.
Date available: 2014-09-29T09:35:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143950
.
Reference: [1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for ${\mathfrak a}$-minimax modules.Proc. Am. Math. Soc. 137 (2009), 439-448. MR 2448562, 10.1090/S0002-9939-08-09530-0
Reference: [2] Bijan-Zadeh, M. H.: A common generalization of local cohomology theories.Glasg. Math. J. 21 (1980), 173-181. Zbl 0438.13009, MR 0582127, 10.1017/S0017089500004158
Reference: [3] Borna, K., Sahandi, P., Yassemi, S.: Artinian local cohomology modules.Can. Math. Bull. 50 (2007), 598-602. Zbl 1140.13016, MR 2364209, 10.4153/CMB-2007-058-8
Reference: [4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules.Proc. Am. Math. Soc. 128 (2000), 2851-2853. Zbl 0955.13007, MR 1664309, 10.1090/S0002-9939-00-05328-4
Reference: [5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627
Reference: [6] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules.Manuscr. Math. 117 (2005), 199-205. Zbl 1105.13016, MR 2150481, 10.1007/s00229-005-0538-5
Reference: [7] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of {ZD}-modules.Commun. Algebra 33 (2005), 2857-2863. Zbl 1090.13012, MR 2159511, 10.1081/AGB-200063983
Reference: [8] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/S0002-9939-04-07728-7
Reference: [9] Herzog, J.: Komplexe, Auflösungen und Dualität in der lokalen Algebra.Habilitationsschrift, Universität Regensburg (1970), German.
Reference: [10] Huneke, C.: Problems on local cohomology modules.Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. MR 1165320
Reference: [11] Katzman, M.: An example of an infinite set of associated primes of local cohomology module.J. Algebra 252 (2002), 161-166. MR 1922391, 10.1016/S0021-8693(02)00032-7
Reference: [12] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules.Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. Zbl 1111.13016, MR 2276640, 10.1090/S0002-9939-06-08664-3
Reference: [13] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules.Commun. Algebra 27 (1999), 6191-6198. Zbl 0940.13013, MR 1726302, 10.1080/00927879908826816
Reference: [14] Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H.: Some results on the cofiniteness of local cohomology modules.Czech. Math. J. 62 (2012), 105-110. Zbl 1249.13012, MR 2899737, 10.1007/s10587-012-0019-4
Reference: [15] Mafi, A.: A generalization of the finiteness problem in local cohomology.Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. Zbl 1171.13011, MR 2526419, 10.1007/s12044-009-0016-1
Reference: [16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules.Proc. Am. Math. Soc. 138 (2010), 1965-1968. Zbl 1190.13010, MR 2596030, 10.1090/S0002-9939-10-10235-4
Reference: [17] Singh, A. K.: $p$-torsion elements in local cohomology modules.Math. Res. Lett. 7 (2000), 165-176. Zbl 0965.13013, MR 1764314, 10.4310/MRL.2000.v7.n2.a3
Reference: [18] Zöschinger, H.: Minimax modules.German J. Algebra 102 (1986), 1-32. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0
.

Files

Files Size Format View
CzechMathJ_64-2014-1_8.pdf 256.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo