Title:
|
A generalization of the finiteness problem of the local cohomology modules (English) |
Author:
|
Abbasi, Ahmad |
Author:
|
Roshan-Shekalgourabi, Hajar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
69-78 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012). (English) |
Keyword:
|
local cohomology module |
Keyword:
|
weakly Laskerian module |
Keyword:
|
${\mathfrak a}$-weakly Laskerian module |
Keyword:
|
associated prime |
MSC:
|
13C05 |
MSC:
|
13D45 |
MSC:
|
13E10 |
idZBL:
|
Zbl 06391477 |
idMR:
|
MR3247445 |
DOI:
|
10.1007/s10587-014-0084-y |
. |
Date available:
|
2014-09-29T09:35:27Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143950 |
. |
Reference:
|
[1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for ${\mathfrak a}$-minimax modules.Proc. Am. Math. Soc. 137 (2009), 439-448. MR 2448562, 10.1090/S0002-9939-08-09530-0 |
Reference:
|
[2] Bijan-Zadeh, M. H.: A common generalization of local cohomology theories.Glasg. Math. J. 21 (1980), 173-181. Zbl 0438.13009, MR 0582127, 10.1017/S0017089500004158 |
Reference:
|
[3] Borna, K., Sahandi, P., Yassemi, S.: Artinian local cohomology modules.Can. Math. Bull. 50 (2007), 598-602. Zbl 1140.13016, MR 2364209, 10.4153/CMB-2007-058-8 |
Reference:
|
[4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules.Proc. Am. Math. Soc. 128 (2000), 2851-2853. Zbl 0955.13007, MR 1664309, 10.1090/S0002-9939-00-05328-4 |
Reference:
|
[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627 |
Reference:
|
[6] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules.Manuscr. Math. 117 (2005), 199-205. Zbl 1105.13016, MR 2150481, 10.1007/s00229-005-0538-5 |
Reference:
|
[7] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of {ZD}-modules.Commun. Algebra 33 (2005), 2857-2863. Zbl 1090.13012, MR 2159511, 10.1081/AGB-200063983 |
Reference:
|
[8] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/S0002-9939-04-07728-7 |
Reference:
|
[9] Herzog, J.: Komplexe, Auflösungen und Dualität in der lokalen Algebra.Habilitationsschrift, Universität Regensburg (1970), German. |
Reference:
|
[10] Huneke, C.: Problems on local cohomology modules.Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. MR 1165320 |
Reference:
|
[11] Katzman, M.: An example of an infinite set of associated primes of local cohomology module.J. Algebra 252 (2002), 161-166. MR 1922391, 10.1016/S0021-8693(02)00032-7 |
Reference:
|
[12] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules.Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. Zbl 1111.13016, MR 2276640, 10.1090/S0002-9939-06-08664-3 |
Reference:
|
[13] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules.Commun. Algebra 27 (1999), 6191-6198. Zbl 0940.13013, MR 1726302, 10.1080/00927879908826816 |
Reference:
|
[14] Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H.: Some results on the cofiniteness of local cohomology modules.Czech. Math. J. 62 (2012), 105-110. Zbl 1249.13012, MR 2899737, 10.1007/s10587-012-0019-4 |
Reference:
|
[15] Mafi, A.: A generalization of the finiteness problem in local cohomology.Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. Zbl 1171.13011, MR 2526419, 10.1007/s12044-009-0016-1 |
Reference:
|
[16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules.Proc. Am. Math. Soc. 138 (2010), 1965-1968. Zbl 1190.13010, MR 2596030, 10.1090/S0002-9939-10-10235-4 |
Reference:
|
[17] Singh, A. K.: $p$-torsion elements in local cohomology modules.Math. Res. Lett. 7 (2000), 165-176. Zbl 0965.13013, MR 1764314, 10.4310/MRL.2000.v7.n2.a3 |
Reference:
|
[18] Zöschinger, H.: Minimax modules.German J. Algebra 102 (1986), 1-32. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0 |
. |