Previous |  Up |  Next

Article

Title: Ideal CR submanifolds in non-flat complex space forms (English)
Author: Sasahara, Toru
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 79-90
Summary lang: English
.
Category: math
.
Summary: An explicit representation for ideal CR submanifolds of a complex hyperbolic space has been derived in T. Sasahara (2002). We simplify and reformulate the representation in terms of certain Kähler submanifolds. In addition, we investigate the almost contact metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective space. (English)
Keyword: $\delta $-invariants
Keyword: CR submanifolds
Keyword: ideal submanifolds
MSC: 32V40
MSC: 53B25
MSC: 53C40
MSC: 53C42
idZBL: Zbl 06391478
idMR: MR3247446
DOI: 10.1007/s10587-014-0085-x
.
Date available: 2014-09-29T09:36:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143951
.
Reference: [1] Chen, B. Y.: CR-submanifolds of a Kähler manifold. I.J. Differ. Geom. 16 (1981), 305-322. Zbl 0431.53048, MR 0638795, 10.4310/jdg/1214436106
Reference: [2] Chen, B. Y.: CR-submanifolds of a Kähler manifold. II.J. Differ. Geom. 16 (1981), 493-509. MR 0654640, 10.4310/jdg/1214436226
Reference: [3] Chen, B. Y.: Some new obstructions to minimal and Lagrangian isometric immersions.Jap. J. Math., New Ser. 26 (2000), 105-127. Zbl 1026.53009, MR 1771434, 10.4099/math1924.26.105
Reference: [4] Chen, B. Y.: Pseudo-Riemannian Geometry, $\delta$-Invariants and Applications.World Scientific, Hackensack, NJ (2011). Zbl 1245.53001, MR 2799371
Reference: [5] Chen, B. Y., Ludden, G. D., Montiel, S.: Real submanifolds of a Kähler manifold.Algebras Groups Geom. 1 (1984), 176-212. MR 0760492
Reference: [6] Djorić, M., Okumura, M.: CR Submanifolds of Complex Projective Space.Developments in Mathematics 19. Springer, Berlin (2010). Zbl 1187.32031, MR 2566776, 10.1007/978-1-4419-0434-8_16
Reference: [7] Okumura, M.: Codimension reduction problem for real submanifolds of complex projective space.Differential Geometry and Its Applications (Eger, 1989) Colloq. Math. Soc. János Bolyai 56. North-Holland Amsterdam (1992), 573-585. MR 1211684
Reference: [8] Sasahara, T.: On Ricci curvature of CR-submanifolds wit rank one totally real distribution.Nihonkai Math. J. 12 (2001), 47-58. MR 1833741
Reference: [9] Sasahara, T.: On Chen invariant of CR-submanifolds in a complex hyperbolic space.Tsukuba J. Math. 26 (2002), 119-132. Zbl 1129.53302, MR 1915981, 10.21099/tkbjm/1496164385
.

Files

Files Size Format View
CzechMathJ_64-2014-1_9.pdf 277.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo