Title:
|
Maximal distributional chaos of weighted shift operators on Köthe sequence spaces (English) |
Author:
|
Wu, Xinxing |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
105-114 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop{\rm diam} \lambda _{p}(A)$. (English) |
Keyword:
|
weighted shift operator |
Keyword:
|
principal measure |
Keyword:
|
distributional chaos |
MSC:
|
26A18 |
MSC:
|
28D20 |
MSC:
|
37B40 |
MSC:
|
37D45 |
MSC:
|
54H20 |
idZBL:
|
Zbl 06391480 |
idMR:
|
MR3247448 |
DOI:
|
10.1007/s10587-014-0087-8 |
. |
Date available:
|
2014-09-29T09:39:22Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143953 |
. |
Reference:
|
[1] Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators.J. Math. Anal. Appl. 373 (2011), 83-93. Zbl 1214.47012, MR 2684459, 10.1016/j.jmaa.2010.06.011 |
Reference:
|
[2] Duan, J., Fu, X.-C., Liu, P.-D., Manning, A.: A linear chaotic quantum harmonic oscillator.Appl. Math. Lett. 12 (1999), 15-19. Zbl 0956.37057, MR 1663405, 10.1016/S0893-9659(98)00119-0 |
Reference:
|
[3] Köthe, G.: Topological Vector Spaces I.Translated from German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer, New York (1969). MR 0248498 |
Reference:
|
[4] Li, T. Y., Yorke, J. A.: Period three implies chaos.Am. Math. Mon. 82 (1975), 985-992. Zbl 0351.92021, MR 0385028, 10.2307/2318254 |
Reference:
|
[5] Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts.J. Math. Anal. Appl. 351 (2009), 607-615. Zbl 1157.47008, MR 2473967, 10.1016/j.jmaa.2008.10.049 |
Reference:
|
[6] Martínez-Giménez, F.: Chaos for power series of backward shift operators.Proc. Am. Math. Soc. 135 (2007), 1741-1752. Zbl 1115.47008, MR 2286084, 10.1090/S0002-9939-07-08658-3 |
Reference:
|
[7] Meise, R., Vogt, D.: Introduction to Functional Analysis.Translated from the German by M. S. Ramanujan and revised by the authors. Oxford Graduate Texts Mathematics 2 The Clarendon Press, Oxford University Press, New York (1997). Zbl 0924.46002, MR 1483073 |
Reference:
|
[8] Oprocha, P., Wilczyński, P.: Shift spaces and distributional chaos.Chaos Solitons Fractals 31 (2007), 347-355. Zbl 1140.37303, MR 2259760, 10.1016/j.chaos.2005.09.069 |
Reference:
|
[9] Pikula, R.: On some notions of chaos in dimension zero.Colloq. Math. 107 (2007), 167-177. Zbl 1130.37327, MR 2284159, 10.4064/cm107-2-1 |
Reference:
|
[10] Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval.Trans. Am. Math. Soc. 344 (1994), 737-754. Zbl 0812.58062, MR 1227094, 10.1090/S0002-9947-1994-1227094-X |
Reference:
|
[11] Schweizer, B., Sklar, A., Smítal, J.: Distributional (and other) chaos and its measurement.Real Anal. Exch. 26 (2000/01), 495-524. MR 1844132, 10.2307/44154056 |
Reference:
|
[12] Smítal, J., Štefánková, M.: Distributional chaos for triangular maps.Chaos Solitons Fractals 21 (2004), 1125-1128. Zbl 1060.37037, MR 2047330, 10.1016/j.chaos.2003.12.105 |
Reference:
|
[13] Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos.Nonlinear Anal., Theory Methods Appl. 68 (2008), 1682-1686. Zbl 1142.37309, MR 2388841, 10.1016/j.na.2006.12.048 |
Reference:
|
[14] Wu, X., Zhu, P.: On the equivalence of four chaotic operators.Appl. Math. Lett. 25 (2012), 545-549. Zbl 1242.37009, MR 2856030, 10.1016/j.aml.2011.09.055 |
Reference:
|
[15] Wu, X., Zhu, P.: The principal measure of a quantum harmonic oscillator.J. Phys. A, Math. Theor. 44 (2011), ID 505101, 6 pages. Zbl 1238.81129, MR 2869648 |
Reference:
|
[16] Wu, X., Zhu, P.: Chaos in a class of nonconstant weighted shift operators.Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), ID 1350010, 9 pages. Zbl 1270.37016, MR 3038635 |
. |