Previous |  Up |  Next

Article

Title: Maximal distributional chaos of weighted shift operators on Köthe sequence spaces (English)
Author: Wu, Xinxing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 105-114
Summary lang: English
.
Category: math
.
Summary: During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0< \epsilon < \mathop{\rm diam} \lambda _{p}(A)$. (English)
Keyword: weighted shift operator
Keyword: principal measure
Keyword: distributional chaos
MSC: 26A18
MSC: 28D20
MSC: 37B40
MSC: 37D45
MSC: 54H20
idZBL: Zbl 06391480
idMR: MR3247448
DOI: 10.1007/s10587-014-0087-8
.
Date available: 2014-09-29T09:39:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143953
.
Reference: [1] Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators.J. Math. Anal. Appl. 373 (2011), 83-93. Zbl 1214.47012, MR 2684459, 10.1016/j.jmaa.2010.06.011
Reference: [2] Duan, J., Fu, X.-C., Liu, P.-D., Manning, A.: A linear chaotic quantum harmonic oscillator.Appl. Math. Lett. 12 (1999), 15-19. Zbl 0956.37057, MR 1663405, 10.1016/S0893-9659(98)00119-0
Reference: [3] Köthe, G.: Topological Vector Spaces I.Translated from German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer, New York (1969). MR 0248498
Reference: [4] Li, T. Y., Yorke, J. A.: Period three implies chaos.Am. Math. Mon. 82 (1975), 985-992. Zbl 0351.92021, MR 0385028, 10.2307/2318254
Reference: [5] Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts.J. Math. Anal. Appl. 351 (2009), 607-615. Zbl 1157.47008, MR 2473967, 10.1016/j.jmaa.2008.10.049
Reference: [6] Martínez-Giménez, F.: Chaos for power series of backward shift operators.Proc. Am. Math. Soc. 135 (2007), 1741-1752. Zbl 1115.47008, MR 2286084, 10.1090/S0002-9939-07-08658-3
Reference: [7] Meise, R., Vogt, D.: Introduction to Functional Analysis.Translated from the German by M. S. Ramanujan and revised by the authors. Oxford Graduate Texts Mathematics 2 The Clarendon Press, Oxford University Press, New York (1997). Zbl 0924.46002, MR 1483073
Reference: [8] Oprocha, P., Wilczyński, P.: Shift spaces and distributional chaos.Chaos Solitons Fractals 31 (2007), 347-355. Zbl 1140.37303, MR 2259760, 10.1016/j.chaos.2005.09.069
Reference: [9] Pikula, R.: On some notions of chaos in dimension zero.Colloq. Math. 107 (2007), 167-177. Zbl 1130.37327, MR 2284159, 10.4064/cm107-2-1
Reference: [10] Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval.Trans. Am. Math. Soc. 344 (1994), 737-754. Zbl 0812.58062, MR 1227094, 10.1090/S0002-9947-1994-1227094-X
Reference: [11] Schweizer, B., Sklar, A., Smítal, J.: Distributional (and other) chaos and its measurement.Real Anal. Exch. 26 (2000/01), 495-524. MR 1844132, 10.2307/44154056
Reference: [12] Smítal, J., Štefánková, M.: Distributional chaos for triangular maps.Chaos Solitons Fractals 21 (2004), 1125-1128. Zbl 1060.37037, MR 2047330, 10.1016/j.chaos.2003.12.105
Reference: [13] Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos.Nonlinear Anal., Theory Methods Appl. 68 (2008), 1682-1686. Zbl 1142.37309, MR 2388841, 10.1016/j.na.2006.12.048
Reference: [14] Wu, X., Zhu, P.: On the equivalence of four chaotic operators.Appl. Math. Lett. 25 (2012), 545-549. Zbl 1242.37009, MR 2856030, 10.1016/j.aml.2011.09.055
Reference: [15] Wu, X., Zhu, P.: The principal measure of a quantum harmonic oscillator.J. Phys. A, Math. Theor. 44 (2011), ID 505101, 6 pages. Zbl 1238.81129, MR 2869648
Reference: [16] Wu, X., Zhu, P.: Chaos in a class of nonconstant weighted shift operators.Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), ID 1350010, 9 pages. Zbl 1270.37016, MR 3038635
.

Files

Files Size Format View
CzechMathJ_64-2014-1_11.pdf 263.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo