Previous |  Up |  Next

Article

Title: New results for EP matrices in indefinite inner product spaces (English)
Author: Radojević, Ivana M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 91-103
Summary lang: English
.
Category: math
.
Summary: In this paper we study $J$-EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and $J$-EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some conditions. (English)
Keyword: EP matrix
Keyword: indefinite matrix product
Keyword: reverse order law
Keyword: partial order
Keyword: indefinite inner product space
MSC: 06A06
MSC: 15A09
MSC: 47B50
idZBL: Zbl 06391479
idMR: MR3247447
DOI: 10.1007/s10587-014-0086-9
.
Date available: 2014-09-29T09:37:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143952
.
Reference: [1] Arghiriade, E.: Sur les matrices qui sont permutables avec leur inverse généralisée.Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 35 (1963), 244-251 French. Zbl 0122.01703, MR 0179191
Reference: [2] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications. 2nd ed.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). Zbl 1026.15004, MR 1987382
Reference: [3] Djordjević, D. S., Rakočević, V.: Lectures on Generalized Inverses.University of Niš, Faculty of Sciences and Mathematics, Niš (2008). MR 2472376
Reference: [4] Drazin, M. P.: Natural structures on semigroups with involution.Bull. Am. Math. Soc. 84 (1978), 139-141. Zbl 0395.20044, MR 0486234, 10.1090/S0002-9904-1978-14442-5
Reference: [5] Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications.Birkhäuser Basel (2005). Zbl 1084.15005, MR 2186302
Reference: [6] Hartwig, R. E., Katz, I. J.: On products of $EP$ matrices.Linear Algebra Appl. 252 (1997), 339-345. Zbl 0868.15015, MR 1428641, 10.1016/0024-3795(95)00693-1
Reference: [7] Jayaraman, S.: EP matrices in indefinite inner product spaces.Funct. Anal. Approx. Comput. 4 (2012), 23-31. MR 3087547
Reference: [8] Kamaraj, K., Ramanathan, K., Sivakumar, K. C.: Indefinite product of matrices and applications to indefinite inner product spaces.J. Anal. 12 (2004), 135-142. Zbl 1097.47002, MR 2142970
Reference: [9] Meenakshi, A.: On sums of EP matrices.Houston J. Math. 9 (1983), 63-69. Zbl 0517.15006, MR 0699050
Reference: [10] Mitra, S. K., Bhimasankaram, P., Malik, S. B.: Matrix Partial Orders, Shorted Operators and Applications.Series in Algebra 10 World Scientific, Hackensack (2010). Zbl 1203.15023, MR 2647903
Reference: [11] Ramanathan, K., Sivakumar, K. C.: Theorems of the alternative over indefinite inner product spaces.J. Optim. Theory Appl. 137 (2008), 99-104. Zbl 1151.46055, MR 2386616, 10.1007/s10957-007-9321-y
.

Files

Files Size Format View
CzechMathJ_64-2014-1_10.pdf 257.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo