Previous |  Up |  Next

Article

Title: The Cayley graph and the growth of Steiner loops (English)
Author: Plaumann, P.
Author: Sabinina, L.
Author: Stuhl, I.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 493-498
Summary lang: English
.
Category: math
.
Summary: We study properties of Steiner loops which are of fundamental importance to develop a combinatorial theory of loops along the lines given by Combinatorial Group Theory. In a summary we describe our findings. (English)
Keyword: free Steiner loops
Keyword: Cayley graph
Keyword: growth
MSC: 05C25
MSC: 20N05
idZBL: Zbl 06391557
idMR: MR3269011
.
Date available: 2014-10-09T09:54:14Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143973
.
Reference: [1] Bruck R.: Survey on Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958. MR 0093552
Reference: [2] Colbourn C.J., Dinitz J.H. (Eds.): Steiner Triple Systems.Section 4.5 in CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 14–15 and 70. Zbl 0984.05013
Reference: [3] Evans T.: Varieties of loops and quasigroups.in Quasigroups and Loops: Theory and Applications, ed. O. Chein, H.O. Pflugfelder, J.D.H. Smith, Heldermann, Berlin, 1990, pp. 1–26. Zbl 0721.20044, MR 1125807
Reference: [4] Flagolet P., Sedgewick R.: Analytic Combinatorics.Cambridge University Press, Cambridge, 2009. MR 2483235
Reference: [5] Ganter B., Pfüller U.: A remark on commutative di-associative loops.Algebra Universalis 21 (1985), 310–311. Zbl 0597.20065, MR 0855748, 10.1007/BF01188065
Reference: [6] Grishkov A., Rasskazova D., Rasskazova M., Stuhl I.: Free Steiner triple systems and their automorphism groups.J. Algebra Appl.(to appear).
Reference: [7] Mann A.: How Groups Grow.Cambridge University Press, Cambridge, 2012. Zbl 1253.20032, MR 2894945
Reference: [8] Markovski S., Sokolova A.: Free Steiner loops.Glasnik Matematicki 36 (2001), 85–93. Zbl 0978.08007, MR 1842827
Reference: [9] Mwambene E.: Representing vertex-transitive graphs on groupoids.Quaest. Math. 29 (2006), 279–284. Zbl 1107.05080, MR 2259722, 10.2989/16073600609486163
Reference: [10] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [11] Sabidussi G.: Vertex-transitive graphs.Monatsh. Math. 68 (1964), 426–438. Zbl 0136.44608, MR 0175815, 10.1007/BF01304186
Reference: [12] Strambach K., Stuhl I.: Translation groups of Steiner loops.Discrete Math. 309 (2009), 4225–4227. Zbl 1194.20062, MR 2519154, 10.1016/j.disc.2008.12.019
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_6.pdf 208.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo