Previous |  Up |  Next

Article

Title: On centerless commutative automorphic loops (English)
Author: Nagy, Gábor P.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 485-491
Summary lang: English
.
Category: math
.
Summary: In this short paper, we survey the results on commutative automorphic loops and give a new construction method. Using this method, we present new classes of commutative automorphic loops of exponent $2$ with trivial center. (English)
Keyword: commutative automorphic loop
Keyword: Lie algebra of characteristic $2$
Keyword: nuclear extension
MSC: 20N05
idZBL: Zbl 06391556
idMR: MR3269010
.
Date available: 2014-10-09T09:52:02Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143972
.
Reference: [1] Bruck R.H., Paige J.L.: Loops whose inner mappings are automorphisms.Ann. of Math. (2) 63 (1956), 308–323. Zbl 0074.01701, MR 0076779, 10.2307/1969612
Reference: [2] Cical\`o S., de Graaf W.A., Schneider C.: LieAlgDB - a GAP package.Version 2.1, November 2010, http://www.gap-system.org/Packages/liealgdb.html.
Reference: [3] Csörgö P.: The multiplication group of a finite commutative automorphic loop of order of power of an odd prime $p$ is a $p$-group.J. Algebra 350 (2012), 77–83. MR 2859876, 10.1016/j.jalgebra.2011.09.038
Reference: [4] Csörgö P.: All automorphic loops of order $p^2$ for some prime $p$ are associative.J. Algebra Appl. 12 (2013), no. 6, 1350013. Zbl 1275.20071, MR 3063452, 10.1142/S0219498813500138
Reference: [5] de Barros D.A.S., Grishkov A., Vojtěchovský P.: Commutative automorphic loops of order $p^3$.J. Algebra Appl. 11 (2012), 1250100. MR 2983192, 10.1142/S0219498812501009
Reference: [6] Drápal A.: A class of commutative loops with metacyclic inner mapping groups.Comment. Math. Univ. Carolin. 49 (2008), no. 3, 357–382. MR 2490433
Reference: [7] Hora J., Jedlička P.: Nuclear semidirect product of commutative automorphic loops.J. Algebra Appl. 13 (2014), 1350077. Zbl 1292.20072, MR 3096858, 10.1142/S0219498813500771
Reference: [8] Jedlička P., Kinyon M., Vojtěchovský P.: Constructions of commutative automorphic loops.Comm. Algebra 38 (2010), no. 9, 3243–3267. Zbl 1209.20069, MR 2724218, 10.1080/00927870903200877
Reference: [9] Jedlička P., Kinyon M., Vojtěchovský P.: The structure of commutative automorphic loops.Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl 1215.20060, MR 2719686, 10.1090/S0002-9947-2010-05088-3
Reference: [10] Jedlička P., Kinyon M., Vojtěchovský P.: Nilpotency in automorphic loops of prime power order.J. Algebra 350 (2012), 64–76. 10.1016/j.jalgebra.2011.09.034
Reference: [11] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops.LMS J. Comput. Math. 14 (2011), 200–213. Zbl 1225.20052, MR 2831230, 10.1112/S1461157010000173
Reference: [12] Kinyon M., Grishkov A., Nagy G.P.: Solvability of commutative automorphic loops.Trans. Amer. Math. Soc., to appear, arXiv:1111.7138. MR 3223359
Reference: [13] Kinyon M., Kunen K., Phillips J.D., Vojtěchovský P.: The structure of automorphic loops.in preparation, arXiv:1210.1642.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_5.pdf 213.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo