Previous |  Up |  Next

Article

Title: Nonconvex Lipschitz function in plane which is locally convex outside a discontinuum (English)
Author: Pokorný, Dušan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 509-521
Summary lang: English
.
Category: math
.
Summary: We construct a Lipschitz function on $\mathbb R^2$ which is locally convex on the complement of some totally disconnected compact set but not convex. Existence of such function disproves a theorem that appeared in a paper by L. Pasqualini and was also cited by other authors. (English)
Keyword: convex function
Keyword: convex set
Keyword: exceptional set
MSC: 26B25
MSC: 52A20
MSC: 52A41
idZBL: Zbl 06391559
idMR: MR3269013
.
Date available: 2014-10-09T09:57:48Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143975
.
Reference: [1] Burago Ju D., Zalgaller V.A.: Sufficient tests for convexity.Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 45 (1974), 3–52. MR 0377693
Reference: [2] Dmitriev V.G.: On the construction of $\mathcal H_{n-1}$-almost everywhere convex hypersurface in $\mathbb R^{n+1}$.Mat. Sb. (N.S.) 114(156) (1981), 511–522. MR 0615339
Reference: [3] Kirszbraun M.D.: Über die zusammenziehende und Lipschitzsche Transformationen.Fund. Math. 22 (1934), 77–108.
Reference: [4] Pasqualini L.: Sur les conditions de convexité d'une variété.Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (4) 2 (1938), 1–45. Zbl 0026.08801, MR 1508453
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_8.pdf 255.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo