Previous |  Up |  Next

Article

Title: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification (English)
Author: Zhou, Xiaobing
Author: Jiang, Murong
Author: Huang, Yaqun
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 632-642
Summary lang: English
.
Category: math
.
Summary: This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws. (English)
Keyword: modified function projective synchronization
Keyword: switched state
Keyword: hyperchaotic system
Keyword: complex variable
Keyword: adaptive control
MSC: 34C28
MSC: 34D06
MSC: 34H10
idZBL: Zbl 06386431
idMR: MR3275089
DOI: 10.14736/kyb-2014-4-0632
.
Date available: 2014-11-06T15:12:10Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143988
.
Reference: [1] Bhowmick, S. K., Pal, P., Roy, P. K., Dana, S. K.: Lag synchronization and scaling of chaotic attractor in coupled system..Chaos 22 (2012), 023151. 10.1063/1.4731263
Reference: [2] Chen, Y., Li, X.: Function projective synchronization between two identical chaotic systems..Int. J. Mod. Phys. C 18 (2007), 883-888. 10.1142/S0129183107010607
Reference: [3] Chen, Y., Lü, J., Yu, X., Lin, Z.: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices..SIAM J. Control Optim. 51 (2013), 3274-3301. Zbl 1275.93005, MR 3090151, 10.1137/110850116
Reference: [4] Chen, Y., Lü, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity..Automatica 49 (2013), 1768-1775. MR 3049226, 10.1016/j.automatica.2013.02.021
Reference: [5] Chen, Y., Lü, J., Yu, X., Hill, D.: Multi-agent systems with dynamical topologies: Consensus and applications..IEEE Circuits Syst. Magazine 13 (2013), 21-34. 10.1109/MCAS.2013.2271443
Reference: [6] Du, H. Y., Zeng, Q. S., Wang, C. H.: Modified function projective synchronization of chaotic system..Chaos Solitons Fractals 42 (2009), 2399-2404. Zbl 1198.93011, 10.1016/j.chaos.2009.03.120
Reference: [7] Elabbasy, E. M., El-Dessoky, M. M.: Adaptive feedback control for the projective synchronization of the Lü dynamical system and its application to secure communication..Chin. J. Phys. 48 (2010), 863-872.
Reference: [8] Feng, C. F., Zhang, Y., Sun, J. T., Qi, W., Wang, Y. H.: Generalized projective synchronization in time-delayed chaotic systems..Chaos, Solitons Fractals 38 (2008), 743-747. Zbl 1146.37318, 10.1016/j.chaos.2007.01.037
Reference: [9] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations..Physica D 4 (1982), 139-163. Zbl 1194.37039, MR 0653770, 10.1016/0167-2789(82)90057-4
Reference: [10] Grassi, G.: Generalized synchronization between different chaotic maps via dead-beat control..Chin. Phys. B 21 (2012), 050505. 10.1088/1674-1056/21/5/050505
Reference: [11] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem..Wiley, New York 1991. Zbl 0745.65049, MR 1127425
Reference: [12] Li, G. H.: Modified projective synchronization of chaotic system..Chaos Solitons Fractals 32 (2007), 1786-1790. Zbl 1134.37331, MR 2299092, 10.1016/j.chaos.2005.12.009
Reference: [13] Liu, P., Liu, S. T., Li, X.: Adaptive modified function projective synchronization of general uncertain chaotic complex systems..Phys. Scr. 85 (2012), 035005. 10.1088/0031-8949/85/03/035005
Reference: [14] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized lorenz system and its applications to secure encryption..Kybernetika 46 (2010) 1-18. Zbl 1190.93038, MR 2666891
Reference: [15] Ma, J., Li, F., Huang, L., Jin, W. Y.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system..Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3770-3785. Zbl 1222.65136, 10.1016/j.cnsns.2010.12.030
Reference: [16] Ma, M. H., Zhang, H., Cai, J. P., al., et: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch..Kybernetika 49 (2013), 539-553. MR 3117913
Reference: [17] Mahmoud, G. M., Mahmoud, E. E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters..Nonlinear Dyn. 62 (2010), 875-882. Zbl 1215.93114
Reference: [18] Mahmoud, G. M., Farghaly, A. A. M.: Chaos control of chaotic limit cycles of real and complex van der Pol oscillators..Chaos Solitons Fractals 21 (2004), 915-924. Zbl 1046.70014, MR 2042809, 10.1016/j.chaos.2003.12.039
Reference: [19] Mahmoud, G.M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization of the complex Chen and Lü systems..Int. J. Bifur. Chaos 17 (2007), 4295-4308. Zbl 1146.93372, MR 2394229, 10.1142/S0218127407019962
Reference: [20] Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E.: A hyperchaotic complex Chen system and its dynamics..Int. J. Appl. Math. Stat. 12 (2007), 90-100. Zbl 1136.37327, MR 2374504
Reference: [21] Mahmoud, G. M., Ahmed, M. E., Mahmoud, E. E.: Analysis of hyperchaotic complex Lorenz systems..Int. J. Mod. Phys. C 19 (2008), 1477-1494. Zbl 1170.37311, 10.1142/S0129183108013151
Reference: [22] Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E.: On the hyperchaotic complex Lü system..Nonlinear Dyn. 58 (2009), 725-738. Zbl 1183.70053, MR 2563618
Reference: [23] Mahmoud, G. M., Al-Kashif, M. A., Farghaly, A. A.: Chaotic and hyperchaotic attractors of a complex nonlinear system..J. Phys. A: Math. Theor. 41 (2008), 055104. Zbl 1131.37036, MR 2433424, 10.1088/1751-8113/41/5/055104
Reference: [24] Mahmoud, G. M., Ahmed, M. E., Sabor, N.: On autonomous and nonautonomous modified hyperchaotic complex Lü systems..Int. J. Bifur. Chaos 21 (2011), 1913-1926. Zbl 1248.34053, MR 2835466, 10.1142/S0218127411029525
Reference: [25] Mahmoud, G. M., Ahmed, M. E.: A hyperchaotic complex system generating two-, three-, and four-scroll attractors..J. Vib. Control 18 (2012), 841-849. MR 2954367, 10.1177/1077546311405370
Reference: [26] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems..Phys. Rev. Lett. 82 (1999), 3042-3045. 10.1103/PhysRevLett.82.3042
Reference: [27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/PhysRevLett.64.821
Reference: [28] Shen, C., Yu, S., Lu, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation..IEEE Trans. Circuits Syst. I 61 (2014), 854-864. 10.1109/TCSI.2013.2283994
Reference: [29] Sudheer, K. S., Sabir, M.: Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters..Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4058-4064. 10.1016/j.cnsns.2010.01.014
Reference: [30] Wang, J. W., Chen, A. M.: Partial synchronization in coupled chemical chaotic oscillators..J. Comp. Appl. Math. 233 (2010), 1897-1904. Zbl 1194.34095, MR 2564025, 10.1016/j.cam.2009.09.026
Reference: [31] Wu, X. J., Wang, H., Lu, H. T.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication..Nonlinear Anal.: Real World Appl. 13 (2012), 1441-1450. Zbl 1239.94003, MR 2863970
Reference: [32] Yu, F., Wang, C. H., Wan, Q. Z., Hu, Y.: Complete switched modified function projective synchronization of a five-term chaotic system with uncertain parameters and disturbances..Pramana 80 (2013), 223-235. 10.1007/s12043-012-0481-4
Reference: [33] Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems..Nonlinear Anal.: Real World Appl. 12 (2011), 811-816. Zbl 1209.34065, MR 2736173
.

Files

Files Size Format View
Kybernetika_50-2014-4_10.pdf 881.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo