Previous |  Up |  Next

Article

Title: Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation (English)
Author: Wang, Zhen
Author: Sun, Wei
Author: Wei, Zhouchao
Author: Xi, Xiaojian
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 616-631
Summary lang: English
.
Category: math
.
Summary: Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in $R^3$, the dynamical behaviors at infinity were described completely. Moreover, a RMFPS scheme of this special system was proposed and proved based on Lyapunov direct method. The simulation results demonstrate the correctness of the dynamics analysis and the effectiveness of the proposed synchronization strategy. (English)
Keyword: Hopf bifurcation
Keyword: center manifold theorem
Keyword: Poincare compactification
Keyword: robust modified function projective synchronization
Keyword: chaotic systems
MSC: 34C23
MSC: 34C28
MSC: 34H10
MSC: 34H20
MSC: 93C15
idZBL: Zbl 06386430
idMR: MR3275088
DOI: 10.14736/kyb-2014-4-0616
.
Date available: 2014-11-06T15:08:59Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143987
.
Reference: [1] Chen, G. R., Ueta, T.: Yet another chaotic attractor..Int. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl 0962.37013, MR 1729683, 10.1142/S0218127499001024
Reference: [2] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters..Int. J. Nonlinear Sci. 10 (2010), 17-23. MR 2721064
Reference: [3] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity..Automatica 49 (2013), 1768-1775. MR 3049226, 10.1016/j.automatica.2013.02.021
Reference: [4] Chen, Y., Lü, J. H., Yu, X. H., Hill, D. J.: Multi-agent systems with dynamical topologies: Consensus and applications..IEEE Circuits Syst. Magazine 13 (2013), 21-34. 10.1109/MCAS.2013.2271443
Reference: [5] Chen, Y., Lü, J. H., Yu, X. H., Lin, Z. L.: Consensus of discrete-time second order multi-agent systems based on infinite products of general stochastic matrices..SIAM J. Control Optim. 51 (2013), 3274-3301. MR 3090151, 10.1137/110850116
Reference: [6] Cima, A., Llibre, J.: Bounded polynomial vector field..T. Amer. Math. Soc. 318 (1990), 557-579. MR 0998352, 10.1090/S0002-9947-1990-0998352-5
Reference: [7] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems..Springer, Berlin 2006. Zbl 1110.34002, MR 2256001
Reference: [8] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator..Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. 10.1016/j.cnsns.2009.06.027
Reference: [9] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory..Springer-Verlag, New York 1998. Zbl 1082.37002, MR 1711790
Reference: [10] Lee, T. H., Park, J. H.: Adaptive functional projective lag synchronization of a hyperchaotic Rössler system..Chin. Phys. Lett. 26 (2009), 090507. 10.1088/0256-307X/26/9/090507
Reference: [11] Leonov, G. A., Kuznetsov, N. V.: Prediction of hidden oscillations existence in nonlinear dynamical systems: analytics and simulation..Adv. Intelligent Syst. Comput. 210 (2013), 5-13. Zbl 1272.93064, 10.1007/978-3-319-00542-3_3
Reference: [12] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors..Phys. Lett. A 375 (2011), 2230-2233. Zbl 1242.34102, MR 2800438, 10.1016/j.physleta.2011.04.037
Reference: [13] Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication..Kybernetika 48 (2012), 190-205. Zbl 1256.93084, MR 2954320
Reference: [14] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system..Nonlinear Dyn. 70 (2012), 2203-2212. Zbl 1268.34092, MR 2992208
Reference: [15] Liu, Y. J., Yang, Q. G.: Dynamics of the Lü system on the invariant algebraic surface and at infinity..Int. J. Bifur. Chaos 21 (2011), 2559-2582. Zbl 1248.34069, MR 2859678, 10.1142/S0218127411029938
Reference: [16] Lorenz, E. N.: Deterministic non-periodic flow..J. Atmospheric Sci. 20 (1963), 130-141. 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Reference: [17] Messias, M., Gouveia, M. R.: Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations..Nonlinear Dyn. 69 (2012), 577-587. Zbl 1256.37007, MR 2929895, 10.1007/s11071-011-0288-8
Reference: [18] Shen, C. W., Yu, S. M., Lü, J. H., Chen, G. R.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation..IEEE Trans. Circuits-I 61 (2014), 854-864. 10.1109/TCSI.2013.2283994
Reference: [19] Sprott, J. C.: Some simple chaotic flows..Phys. Rev. E 50 (1994), 647-650. MR 1381868, 10.1103/PhysRevE.50.R647
Reference: [20] Sudheer, K. S., Sabir, M.: Adaptive modiffied function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters..Phys. Lett. A 373 (2009), 3743-3748. MR 2569019, 10.1016/j.physleta.2009.08.027
Reference: [21] Vaněček, A., Čelikovský, S.: Control systems: From Linear Analysis to Synthesis of Chaos..Prentice-Hall, London 1996. Zbl 0874.93006
Reference: [22] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium..Commun. Nonlinear Sci. Numer. Simul. 17 (2012). 1264-1272. MR 2843793, 10.1016/j.cnsns.2011.07.017
Reference: [23] Wang, Z.: Existence of attractor and control of a 3D differential system..Nonlinear Dyn. 60 (2010), 369-373. Zbl 1189.70103, MR 2645029, 10.1007/s11071-009-9601-1
Reference: [24] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system..Acta Phys. Sin. 60 (2011), 010513.
Reference: [25] Wei, Z. C., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium..Kybernetika 49 (2013), 359-374. Zbl 1276.34043, MR 3085401
Reference: [26] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci..Int. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl 1147.34306, MR 2427132, 10.1142/S0218127408021063
.

Files

Files Size Format View
Kybernetika_50-2014-4_9.pdf 1.330Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo