[1] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M.: 
Maple V---language reference manual. Springer, New York (1991). 
Zbl 0758.68038 
[2] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: 
KANT V4. J. Symb. Comput. 24 (1997), 267-283. 
DOI 10.1006/jsco.1996.0126 | 
MR 1484479 | 
Zbl 0886.11070 
[3] Gaál, I.: 
Diophantine Equations and Power Integral Bases. New Computational Methods. Birkhäuser, Boston (2002). 
MR 1896601 | 
Zbl 1016.11059 
[5] Gaál, I., Pethő, A., Pohst, M.: 
Simultaneous representation of integers by a pair of ternary quadratic forms---with an application to index form equations in quartic number fields. J. Number Theory 57 (1996), 90-104. 
DOI 10.1006/jnth.1996.0035 | 
MR 1378574 | 
Zbl 0853.11023 
[7] Gras, M. N.: 
Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb Q$. French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). 
MR 0898667 
[9] Jadrijević, B.: 
Solving index form equations in the two parametric families of biquadratic fields. Math. Commun. 14 (2009), 341-363. 
MR 2743182 
[10] Kim, H. K., Lee, J. H.: Evaluation of the Dedekind zeta function at $s =-1$ of the simplest quartic fields. Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79.
[12] Lettl, G., A.Pethő,: 
Complete solution of a family of quartic Thue equations. Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. 
DOI 10.1007/BF02953340 | 
MR 1359142 
[14] Mordell, L. J.: 
Diophantine Equations. Pure and Applied Mathematics 30 Academic Press, London (1969). 
MR 0249355 | 
Zbl 0188.34503