Previous |  Up |  Next

Article

Title: Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields (English)
Author: Gaál, István
Author: Petrányi, Gábor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 465-475
Summary lang: English
.
Category: math
.
Summary: It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\neq 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family. (English)
Keyword: simplest quartic field
Keyword: power integral base
Keyword: monogeneity
MSC: 11D25
MSC: 11R04
MSC: 11Y50
idZBL: Zbl 06391506
idMR: MR3277748
DOI: 10.1007/s10587-014-0113-x
.
Date available: 2014-11-10T09:49:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144010
.
Reference: [1] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M.: Maple V---language reference manual.Springer, New York (1991). Zbl 0758.68038
Reference: [2] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: KANT V4.J. Symb. Comput. 24 (1997), 267-283. Zbl 0886.11070, MR 1484479, 10.1006/jsco.1996.0126
Reference: [3] Gaál, I.: Diophantine Equations and Power Integral Bases. New Computational Methods.Birkhäuser, Boston (2002). Zbl 1016.11059, MR 1896601
Reference: [4] Gaál, I., Lettl, G.: A parametric family of quintic Thue equations. II.Monatsh. Math. 131 (2000), 29-35. Zbl 0995.11024, MR 1796800, 10.1007/s006050070022
Reference: [5] Gaál, I., Pethő, A., Pohst, M.: Simultaneous representation of integers by a pair of ternary quadratic forms---with an application to index form equations in quartic number fields.J. Number Theory 57 (1996), 90-104. Zbl 0853.11023, MR 1378574, 10.1006/jnth.1996.0035
Reference: [6] Gaál, I., Pohst, M.: Power integral bases in a parametric family of totally real cyclic quintics.Math. Comput. 66 (1997), 1689-1696. Zbl 0899.11064, MR 1423074, 10.1090/S0025-5718-97-00868-5
Reference: [7] Gras, M. N.: Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb Q$.French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). MR 0898667
Reference: [8] Jadrijević, B.: Establishing the minimal index in a parametric family of bicyclic biquadratic fields.Period. Math. Hung. 58 (2009), 155-180. Zbl 1265.11061, MR 2531162, 10.1007/s10998-009-10155-3
Reference: [9] Jadrijević, B.: Solving index form equations in the two parametric families of biquadratic fields.Math. Commun. 14 (2009), 341-363. MR 2743182
Reference: [10] Kim, H. K., Lee, J. H.: Evaluation of the Dedekind zeta function at $s =-1$ of the simplest quartic fields.Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79.
Reference: [11] Lazarus, A. J.: On the class number and unit index of simplest quartic fields.Nagoya Math. J. 121 (1991), 1-13. Zbl 0719.11073, MR 1096465, 10.1017/S0027763000003378
Reference: [12] Lettl, G., A.Pethő,: Complete solution of a family of quartic Thue equations.Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. MR 1359142, 10.1007/BF02953340
Reference: [13] Lettl, G., Pethő, A., Voutier, P.: Simple families of Thue inequalities.Trans. Am. Math. Soc. 351 (1999), 1871-1894. Zbl 0920.11041, MR 1487624, 10.1090/S0002-9947-99-02244-8
Reference: [14] Mordell, L. J.: Diophantine Equations.Pure and Applied Mathematics 30 Academic Press, London (1969). Zbl 0188.34503, MR 0249355
Reference: [15] Olajos, P.: Power integral bases in the family of simplest quartic fields.Exp. Math. 14 (2005), 129-132. Zbl 1092.11042, MR 2169516, 10.1080/10586458.2005.10128916
Reference: [16] Shanks, D.: The simplest cubic fields.Math. Comput. 28 (1974), 1137-1152. Zbl 0307.12005, MR 0352049, 10.1090/S0025-5718-1974-0352049-8
.

Files

Files Size Format View
CzechMathJ_64-2014-2_13.pdf 249.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo