Title:
|
A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube (English) |
Author:
|
Kurilić, Miloš S. |
Author:
|
Pavlović, Aleksandar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
519-537 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{<\omega }\omega _2)$ is weakly topological“ is independent of ZFC. (English) |
Keyword:
|
complete Boolean algebra |
Keyword:
|
convergence structure |
Keyword:
|
algebraic convergence |
Keyword:
|
forcing |
Keyword:
|
Cantor cube |
Keyword:
|
Aleksandrov cube |
Keyword:
|
small cardinal |
MSC:
|
03E17 |
MSC:
|
03E40 |
MSC:
|
06E10 |
MSC:
|
54A20 |
MSC:
|
54D55 |
idZBL:
|
Zbl 06391510 |
idMR:
|
MR3277752 |
DOI:
|
10.1007/s10587-014-0117-6 |
. |
Date available:
|
2014-11-10T09:57:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144014 |
. |
Reference:
|
[1] Balcar, B., Główczyński, W., Jech, T.: The sequential topology on complete Boolean algebras.Fundam. Math. 155 (1998), 59-78. Zbl 0910.28004, MR 1487988 |
Reference:
|
[2] Balcar, B., Jech, T., Pazák, T.: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann.Bull. Lond. Math. Soc. 37 (2005), 885-898. Zbl 1101.28003, MR 2186722, 10.1112/S0024609305004807 |
Reference:
|
[3] Balcar, B., Jech, T.: Weak distributivity, a problem of von Neumann and the mystery of measurability.Bull. Symb. Log. 12 (2006), 241-266. Zbl 1120.03028, MR 2223923, 10.2178/bsl/1146620061 |
Reference:
|
[4] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on $N$ covered by nowhere dense sets.Fundam. Math. 110 (1980), 11-24. Zbl 0568.54004, MR 0600576, 10.4064/fm-110-1-11-24 |
Reference:
|
[5] Engelking, R.: General Topology. Translated from the Polish.Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). MR 1039321 |
Reference:
|
[6] Farah, I.: Examples of $\varepsilon$-exhaustive pathological submeasures.Fundam. Math. 181 (2004), 257-272. Zbl 1069.28002, MR 2099603, 10.4064/fm181-3-4 |
Reference:
|
[7] Jech, T.: Set Theory.Perspectives in Mathematical Logic Springer, Berlin (1997). Zbl 0882.03045, MR 1492987 |
Reference:
|
[8] Kunen, K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics 102 North-Holland, Amsterdam (1980). Zbl 0443.03021, MR 0597342 |
Reference:
|
[9] Kurilić, M. S., Pavlović, A.: A posteriori convergence in complete Boolean algebras with the sequential topology.Ann. Pure Appl. Logic 148 (2007), 49-62. Zbl 1132.06008, MR 2352578, 10.1016/j.apal.2007.05.002 |
Reference:
|
[10] Kurilić, M. S., Pavlović, A.: Some forcing related convergence structures on complete Boolean algebras.Novi Sad J. Math. 40 (2010), 77-94. Zbl 1265.54131, MR 2827660 |
Reference:
|
[11] Kurilić, M. S., Pavlović, A.: The convergence of the sequences coding the ground model reals.Publ. Math. Debrecen 82 (2013), 277-292. MR 3034346, 10.5486/PMD.2013.5199 |
Reference:
|
[12] Kurilić, M. S., Todorčević, S.: Property $(\hbar)$ and cellularity of complete Boolean algebras.Arch. Math. Logic 48 (2009), 705-718. Zbl 1201.03044, MR 2563812, 10.1007/s00153-009-0144-4 |
Reference:
|
[13] Maharam, D.: An algebraic characterization of measure algebras.Ann. Math. (2) 48 (1947), 154-167. Zbl 0029.20401, MR 0018718, 10.2307/1969222 |
Reference:
|
[14] (ed.), R. D. Mauldin: The Scottish Book. Mathematics from the Scottish Café.Birkhäuser, Boston (1981). Zbl 0485.01013, MR 0666400 |
Reference:
|
[15] Talagrand, M.: Maharam's problem.C. R., Math., Acad. Sci. Paris 342 (2006), 501-503. Zbl 1099.28004, MR 2214604, 10.1016/j.crma.2006.01.026 |
Reference:
|
[16] Talagrand, M.: Maharam's problem.Ann. Math. (2) 168 (2008), 981-1009. Zbl 1185.28002, MR 2456888 |
Reference:
|
[17] Todorcevic, S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures.Fundam. Math. 183 (2004), 169-183. Zbl 1071.28004, MR 2127965, 10.4064/fm183-2-7 |
Reference:
|
[18] Douwen, E. K. van: The integers and topology.Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland, Amsterdam (1984), 111-167. MR 0776622 |
Reference:
|
[19] Velickovic, B.: ccc forcing and splitting reals.Isr. J. Math. 147 (2005), 209-220. Zbl 1118.03046, MR 2166361, 10.1007/BF02785365 |
. |