Previous |  Up |  Next

Article

Title: Modulation space estimates for Schrödinger type equations with time-dependent potentials (English)
Author: Wei, Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 539-566
Summary lang: English
.
Category: math
.
Summary: We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian $(-\Delta )^{\kappa /2}$ with $1\leq \kappa \leq 2$. Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding propagator are obtained in the framework of modulation spaces. The main results of the present article include the case of wave equations. (English)
Keyword: Schrödinger type equation
Keyword: short-time Fourier transform
Keyword: modulation space
Keyword: classical Hamiltonian
Keyword: complex interpolation
MSC: 35Q40
MSC: 35Q41
MSC: 35R11
MSC: 42B35
idZBL: Zbl 06391511
idMR: MR3277753
DOI: 10.1007/s10587-014-0118-5
.
Date available: 2014-11-10T09:59:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144015
.
Reference: [1] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces.J. Funct. Anal. 246 (2007), 366-384. Zbl 1120.42010, MR 2321047, 10.1016/j.jfa.2006.12.019
Reference: [2] Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators.Commun. Partial Differ. Equations 3 (1978), 979-1005. Zbl 0389.35046, MR 0507783, 10.1080/03605307808820083
Reference: [3] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups.Wavelets and Their Applications, Proc. Internat. Conf., Chennai, India M. Krishna, R. Radha, S. Thangavelu Allied Publishers, New Delhi (2003), 99-140 Updated version of a technical report, University of Vienna, 1983.
Reference: [4] Feichtinger, H. G.: Banach spaces of distributions of Wiener's type and interpolation.Functional Analysis and Approximation, Proc. Conf., Oberwolfach 1980 Internat. Ser. Numer. Math. 60 Birkhäuser, Basel (1981), 153-165. MR 0650272
Reference: [5] Gröchenig, K.: Foundations of Time-Frequency Analysis.Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2001). Zbl 0966.42020, MR 1843717
Reference: [6] Hörmander, L.: Estimates for translation invariant operators in $L^{p}$-spaces.Acta Math. 104 (1960), 93-140. Zbl 0093.11402, MR 0121655, 10.1007/BF02547187
Reference: [7] Kato, K., Kobayashi, M., Ito, S.: Representation of Schrödinger operator of a free particle via short-time Fourier transform and its applications.Tohoku Math. J. (2) 64 (2012), 223-231. Zbl 1246.35171, MR 2948820, 10.2748/tmj/1341249372
Reference: [8] Kato, K., Kobayashi, M., Ito, S.: Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator.SUT J. Math. 47 (2011), 175-183. Zbl 1256.35104, MR 2953118
Reference: [9] Kato, K., Kobayashi, M., Ito, S.: Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials.J. Funct. Anal. 266 (2014), 733-753. Zbl 1294.35010, MR 3132728, 10.1016/j.jfa.2013.08.017
Reference: [10] Kitada, H.: Scattering theory for the fractional power of negative Laplacian.J. Abstr. Differ. Equ. Appl. 1 (2010), 1-26. Zbl 1208.35097, MR 2747652
Reference: [11] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data.J. Differ. Equations 232 (2007), 36-73. Zbl 1121.35132, MR 2281189, 10.1016/j.jde.2006.09.004
.

Files

Files Size Format View
CzechMathJ_64-2014-2_18.pdf 354.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo