Previous |  Up |  Next

Article

Title: G-dimension over local homomorphisms with respect to a semi-dualizing complex (English)
Author: Dejun, Wu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 567-579
Summary lang: English
.
Category: math
.
Summary: We study the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex. Some results that track the behavior of Gorenstein properties over local ring homomorphisms under composition and decomposition are given. As an application, we characterize a dualizing complex for $R$ in terms of the finiteness of the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex. (English)
Keyword: Cohen factorization
Keyword: Gorenstein dimension
Keyword: Gorenstein homomorphism
Keyword: semi-dualizing complex
MSC: 13D02
MSC: 13D05
MSC: 13D07
idZBL: Zbl 06391512
idMR: MR3277754
DOI: 10.1007/s10587-014-0119-4
.
Date available: 2014-11-10T10:00:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144016
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Mem. Am. Math. Soc. 94 Providence (1969). Zbl 0204.36402, MR 0269685
Reference: [2] Avramov, L. L., Foxby, H.-B.: Locally Gorenstein homomorphisms.Am. J. Math. 114 (1992), 1007-1047. Zbl 0769.13007, MR 1183530, 10.2307/2374888
Reference: [3] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension.Proc. Lond. Math. Soc. 75 (1997), 241-270. Zbl 0901.13011, MR 1455856, 10.1112/S0024611597000348
Reference: [4] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms.J. Algebra 164 (1994), 124-145. Zbl 0798.13002, MR 1268330, 10.1006/jabr.1994.1057
Reference: [5] Bennis, D., Mahdou, N.: First, second, and third change of rings theorems for Gorenstein homological dimensions.Commun. Algebra 38 (2010), 3837-3850. Zbl 1205.13018, MR 2760694, 10.1080/00927870903286868
Reference: [6] Christensen, L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics 1747 Sprin-ger, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103984
Reference: [7] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [8] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories.Can. J. Math. 61 (2009), 76-108. Zbl 1173.13016, MR 2488450, 10.4153/CJM-2009-004-x
Reference: [9] Foxby, H.-B., Iyengar, S.: Depth and amplitude for unbounded complexes.Commutative Algebra. Interactions with Algebraic Geometry L. L. Avramov et al. Contemp. Math. 331 American Mathematical Society, Providence, RI (2003), 119-137. Zbl 1096.13516, MR 2013162, 10.1090/conm/331/05906
Reference: [10] Iyengar, S.: Depth for complexes, and intersection theorems.Math. Z. 230 (1999), 545-567. Zbl 0927.13015, MR 1680036, 10.1007/PL00004705
Reference: [11] Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism.Illinois J. Math. 48 (2004), 241-272. Zbl 1103.13009, MR 2048224, 10.1215/ijm/1258136183
.

Files

Files Size Format View
CzechMathJ_64-2014-2_19.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo