Previous |  Up |  Next

Article

Title: Classification of finite rings: theory and algorithm (English)
Author: Behboodi, Mahmood
Author: Beyranvand, Reza
Author: Hashemi, Amir
Author: Khabazian, Hossein
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 641-658
Summary lang: English
.
Category: math
.
Summary: An interesting topic in the ring theory is the classification of finite rings. Although rings of certain orders have already been classified, a full description of all rings of a given order remains unknown. The purpose of this paper is to classify all finite rings (up to isomorphism) of a given order. In doing so, we introduce a new concept of quasi basis for certain type of modules, which is a useful computational tool for dealing with finite rings. Then, using this concept, we give structure and isomorphism theorems for finite rings and state our main result to classify (up to isomorphism) the finite rings of a given order. Finally, based on these results, we describe an algorithm to calculate the structure of all such rings. We have implemented our new algorithm in Maple, and we apply it to an example. (English)
Keyword: classification of finite ring
Keyword: finite abelian group
Keyword: quasi base
MSC: 16P10
MSC: 16Z05
MSC: 68W30
idZBL: Zbl 06391517
idMR: MR3298552
DOI: 10.1007/s10587-014-0124-7
.
Date available: 2014-12-19T15:59:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144050
.
Reference: [1] Chikunji, C. J.: On a class of finite rings.Commun. Algebra 27 (1999), 5049-5081. Zbl 0942.16027, MR 1709253, 10.1080/00927879908826747
Reference: [2] Chikunji, C. J.: On a class of rings of order $p^5$.Math. J. Okayama Univ. 45 (2003), 59-71. Zbl 1055.16023, MR 2038839
Reference: [3] Corbas, B., Williams, G. D.: Rings of order $p^5$ I: Nonlocal rings.J. Algebra 231 (2000), 677-690. Zbl 1017.16014, MR 1778165, 10.1006/jabr.2000.8349
Reference: [4] Corbas, B., Williams, G. D.: Rings of order $p^5$ II: Local rings.J. Algebra 231 (2000), 691-704. Zbl 1017.16015, MR 1778166, 10.1006/jabr.2000.8350
Reference: [5] Derr, J. B., Orr, G. F., Peck, P. S.: Noncommutative rings of order $p^4$.J. Pure Appl. Algebra 97 (1994), 109-116. MR 1312757, 10.1016/0022-4049(94)00015-8
Reference: [6] Eldridge, K. E.: Orders for finite noncommutative rings with unity.Am. Math. Mon. 75 (1968), 512-514. Zbl 0157.07901, MR 0230772, 10.2307/2314716
Reference: [7] Fine, B.: Classification of finite rings of order $p^2$.Math. Mag. 66 (1993), 248-252. MR 1240670, 10.2307/2690742
Reference: [8] Gilmer, R., Mott, J.: Associative rings of order $p^3$.Proc. Japan Acad. 49 (1973), 795-799. Zbl 0309.16015, MR 0369422
Reference: [9] Lidl, R., Wiesenbauer, J.: Ring Theory and Applications. Foundations and Examples of Application in Coding Theory and in Genetics.Textbooks for Mathematics Akademische Verlagsgesellschaft, Wiesbaden (1980), German. MR 0652254
Reference: [10] Raghavendran, R.: A class of finite rings.Compos. Math. 22 (1970), 49-57. Zbl 0212.37901, MR 0263876
Reference: [11] Raghavendran, R.: Finite associative rings.Compos. Math. 21 (1969), 195-229. Zbl 0179.33602, MR 0246905
Reference: [12] Shoda, K.: Über die Einheitengruppe eines endlichen Ringes.Math. Ann. 102 (1929), 273-282 German. MR 1512577, 10.1007/BF01782346
Reference: [13] Wiesenbauer, J.: Über die endlichen Ringe mit gegebener additiver Gruppe.Monatsh. Math. 78 (1974), 164-173 German. Zbl 0286.16013, MR 0347893, 10.1007/BF01294779
Reference: [14] Wilson, R. S.: On the structure of finite rings.Compos. Math. 26 (1973), 79-93. Zbl 0248.16009, MR 0320065
Reference: [15] Wilson, R. S.: On the structure of finite rings II.Pac. J. Math. 51 (1974), 317-325. Zbl 0317.16009, MR 0352169, 10.2140/pjm.1974.51.317
Reference: [16] Wilson, R. S.: Representations of finite rings.Pac. J. Math. 53 (1974), 643-649. Zbl 0317.16008, MR 0369423, 10.2140/pjm.1974.53.643
.

Files

Files Size Format View
CzechMathJ_64-2014-3_5.pdf 307.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo