Title:
|
Point-distinguishing chromatic index of the union of paths (English) |
Author:
|
Chen, Xiang'en |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
629-640 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\neq S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _{0}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture. (English) |
Keyword:
|
general edge coloring |
Keyword:
|
point-distinguishing general edge coloring |
Keyword:
|
point-distinguishing chromatic index |
MSC:
|
05C15 |
idZBL:
|
Zbl 06391516 |
idMR:
|
MR3298551 |
DOI:
|
10.1007/s10587-014-0123-8 |
. |
Date available:
|
2014-12-19T15:57:48Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144049 |
. |
Reference:
|
[1] Balister, P. N.: Packing circuits into $K_n$.Comb. Probab. Comput. 10 (2001), 463-499. Zbl 1113.05309, MR 1869841, 10.1017/S0963548301004771 |
Reference:
|
[2] Balister, P. N., Bollobás, B., Schelp, R. H.: Vertex distinguishing colorings of graphs with $\Delta(G)=2$.Discrete Math. 252 (2002), 17-29. Zbl 1005.05019, MR 1907743 |
Reference:
|
[3] Balister, P. N., Riordan, O. M., Schelp, R. H.: Vertex-distinguishing edge colorings of graphs.J. Graph Theory 42 (2003), 95-109. Zbl 1008.05067, MR 1953223, 10.1002/jgt.10076 |
Reference:
|
[4] Bazgan, C., Harkat-Benhamdine, A., Li, H., Wo'zniak, M.: On the vertex-distinguishing proper edge-colorings of graphs.J. Comb. Theory, Ser. B 75 (1999), 288-301. MR 1676894, 10.1006/jctb.1998.1884 |
Reference:
|
[5] Burris, A. C., Schelp, R. H.: Vertex-distinguishing proper edge-colorings.J. Graph Theory 26 (1997), 73-82. Zbl 0886.05068, MR 1469354, 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C |
Reference:
|
[6] Černý, J., Horňák, M., Soták, R.: Observability of a graph.Math. Slovaca 46 (1996), 21-31. Zbl 0853.05040, MR 1414406 |
Reference:
|
[7] Harary, F., Plantholt, M.: The point-distinguishing chromatic index.Graphs and Application, Proc. 1st Symp. Graph theory, Boulder/Colo. 1982 F. Harary et al. A Wiley-Interscience Publication John Wiley & Sons, New York (1985), 147-162. Zbl 0562.05023, MR 0778404 |
Reference:
|
[8] Horňák, M., Salvi, N. Z.: On the point-distinguishing chromatic index of complete bipartite graphs.Ars Comb. 80 (2006), 75-85. Zbl 1224.05174, MR 2243079 |
Reference:
|
[9] Horňák, M., Soták, R.: Asymptotic behaviour of the observability of $Q_n$.Discrete Math. 176 (1997), 139-148. MR 1477284, 10.1016/S0012-365X(96)00292-0 |
Reference:
|
[10] Horňák, M., Soták, R.: Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}$.Discuss. Math., Graph Theory 17 (1997), 243-251. Zbl 0906.05025, MR 1627943, 10.7151/dmgt.1051 |
Reference:
|
[11] Horňák, M., Soták, R.: Observability of complete multipartite graphs with equipotent parts.Ars Comb. 41 (1995), 289-301. Zbl 0841.05032, MR 1365173 |
Reference:
|
[12] Horňák, M., Soták, R.: The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$.Ars Comb. 42 (1996), 233-242. MR 1386944 |
Reference:
|
[13] Salvi, N. Z.: On the point-distinguishing chromatic index of $K_{n,n}$.Eleventh British Combinatorial Conference (London, 1987), Ars Comb. 25B (1988), 93-104. MR 0942468 |
Reference:
|
[14] Salvi, N. Z.: On the value of the point-distinguishing chromatic index of $K_{n,n}$.Twelfth British Combinatorial Conference (Norwich, 1989), Ars Comb. 29B (1990), 235-244. MR 1412879 |
. |