Previous |  Up |  Next

Article

Title: Point-distinguishing chromatic index of the union of paths (English)
Author: Chen, Xiang'en
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 629-640
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a simple graph. For a general edge coloring of a graph $G$ (i.e., not necessarily a proper edge coloring) and a vertex $v$ of $G$, denote by $S(v)$ the set (not a multiset) of colors used to color the edges incident to $v$. For a general edge coloring $f$ of a graph $G$, if $S(u)\neq S(v)$ for any two different vertices $u$ and $v$ of $G$, then we say that $f$ is a point-distinguishing general edge coloring of $G$. The minimum number of colors required for a point-distinguishing general edge coloring of $G$, denoted by $\chi _{0}(G)$, is called the point-distinguishing chromatic index of $G$. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture. (English)
Keyword: general edge coloring
Keyword: point-distinguishing general edge coloring
Keyword: point-distinguishing chromatic index
MSC: 05C15
idZBL: Zbl 06391516
idMR: MR3298551
DOI: 10.1007/s10587-014-0123-8
.
Date available: 2014-12-19T15:57:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144049
.
Reference: [1] Balister, P. N.: Packing circuits into $K_n$.Comb. Probab. Comput. 10 (2001), 463-499. Zbl 1113.05309, MR 1869841, 10.1017/S0963548301004771
Reference: [2] Balister, P. N., Bollobás, B., Schelp, R. H.: Vertex distinguishing colorings of graphs with $\Delta(G)=2$.Discrete Math. 252 (2002), 17-29. Zbl 1005.05019, MR 1907743
Reference: [3] Balister, P. N., Riordan, O. M., Schelp, R. H.: Vertex-distinguishing edge colorings of graphs.J. Graph Theory 42 (2003), 95-109. Zbl 1008.05067, MR 1953223, 10.1002/jgt.10076
Reference: [4] Bazgan, C., Harkat-Benhamdine, A., Li, H., Wo'zniak, M.: On the vertex-distinguishing proper edge-colorings of graphs.J. Comb. Theory, Ser. B 75 (1999), 288-301. MR 1676894, 10.1006/jctb.1998.1884
Reference: [5] Burris, A. C., Schelp, R. H.: Vertex-distinguishing proper edge-colorings.J. Graph Theory 26 (1997), 73-82. Zbl 0886.05068, MR 1469354, 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
Reference: [6] Černý, J., Horňák, M., Soták, R.: Observability of a graph.Math. Slovaca 46 (1996), 21-31. Zbl 0853.05040, MR 1414406
Reference: [7] Harary, F., Plantholt, M.: The point-distinguishing chromatic index.Graphs and Application, Proc. 1st Symp. Graph theory, Boulder/Colo. 1982 F. Harary et al. A Wiley-Interscience Publication John Wiley & Sons, New York (1985), 147-162. Zbl 0562.05023, MR 0778404
Reference: [8] Horňák, M., Salvi, N. Z.: On the point-distinguishing chromatic index of complete bipartite graphs.Ars Comb. 80 (2006), 75-85. Zbl 1224.05174, MR 2243079
Reference: [9] Horňák, M., Soták, R.: Asymptotic behaviour of the observability of $Q_n$.Discrete Math. 176 (1997), 139-148. MR 1477284, 10.1016/S0012-365X(96)00292-0
Reference: [10] Horňák, M., Soták, R.: Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}$.Discuss. Math., Graph Theory 17 (1997), 243-251. Zbl 0906.05025, MR 1627943, 10.7151/dmgt.1051
Reference: [11] Horňák, M., Soták, R.: Observability of complete multipartite graphs with equipotent parts.Ars Comb. 41 (1995), 289-301. Zbl 0841.05032, MR 1365173
Reference: [12] Horňák, M., Soták, R.: The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$.Ars Comb. 42 (1996), 233-242. MR 1386944
Reference: [13] Salvi, N. Z.: On the point-distinguishing chromatic index of $K_{n,n}$.Eleventh British Combinatorial Conference (London, 1987), Ars Comb. 25B (1988), 93-104. MR 0942468
Reference: [14] Salvi, N. Z.: On the value of the point-distinguishing chromatic index of $K_{n,n}$.Twelfth British Combinatorial Conference (Norwich, 1989), Ars Comb. 29B (1990), 235-244. MR 1412879
.

Files

Files Size Format View
CzechMathJ_64-2014-3_4.pdf 281.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo