Previous |  Up |  Next

Article

Title: Inhomogeneous parabolic Neumann problems (English)
Author: Nittka, Robin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 703-742
Summary lang: English
.
Category: math
.
Summary: Second order parabolic equations on Lipschitz domains subject to inhomogeneous Neumann (or, more generally, Robin) boundary conditions are studied. Existence and uniqueness of weak solutions and their continuity up to the boundary of the parabolic cylinder are proved using methods from the theory of integrated semigroups, showing in particular the well-posedness of the abstract Cauchy problem in spaces of continuous functions. Under natural assumptions on the coefficients and the inhomogeneity the solutions are shown to converge to an equilibrium or to be asymptotically almost periodic. (English)
Keyword: parabolic initial-boundary value problem
Keyword: inhomogeneous Robin boundary conditions
Keyword: existence of weak solution
Keyword: continuity up to the boundary
Keyword: asymptotic behavior
Keyword: asymptotically almost periodic solution
MSC: 35B15
MSC: 35B65
MSC: 35K20
idZBL: Zbl 06391520
idMR: MR3298555
DOI: 10.1007/s10587-014-0127-4
.
Date available: 2014-12-19T16:05:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144053
.
Reference: [1] Arendt, W.: Resolvent positive operators and inhomogeneous boundary conditions.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000), 639-670. Zbl 1072.35077, MR 1817713
Reference: [2] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems.Monographs in Mathematics 96 Birkhäuser, Basel (2001). Zbl 0978.34001, MR 1886588
Reference: [3] Arendt, W., Chovanec, M.: Dirichlet regularity and degenerate diffusion.Trans. Am. Math. Soc. 362 (2010), 5861-5878. Zbl 1205.35139, MR 2661499, 10.1090/S0002-9947-2010-05077-9
Reference: [4] Arendt, W., Nittka, R.: Equivalent complete norms and positivity.Arch. Math. 92 (2009), 414-427. Zbl 1182.46006, MR 2506943, 10.1007/s00013-009-3190-6
Reference: [5] Arendt, W., Schätzle, R.: Semigroups generated by elliptic operators in non-divergence form on $C_0(\Omega)$.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13 (2014), 417-434. MR 3235521
Reference: [6] Bohr, H.: Almost Periodic Functions.Chelsea Publishing Company, New York (1947). MR 0020163
Reference: [7] Bošković, D. M., Krstić, M., Liu, W.: Boundary control of an unstable heat equation via measurement of domain-averaged temperature.IEEE Trans. Autom. Control 46 (2001), 2022-2028. Zbl 1006.93039, MR 1878234, 10.1109/9.975513
Reference: [8] Cannarsa, P., Gozzi, F., Soner, H. M.: A dynamic programming approach to nonlinear boundary control problems of parabolic type.J. Funct. Anal. 117 (1993), 25-61. Zbl 0823.49017, MR 1240261, 10.1006/jfan.1993.1122
Reference: [9] Chapko, R., Kress, R., Yoon, J.-R.: An inverse boundary value problem for the heat equation: the Neumann condition.Inverse Probl. 15 (1999), 1033-1046. Zbl 1044.35527, MR 1710605
Reference: [10] Daners, D.: Heat kernel estimates for operators with boundary conditions.Math. Nachr. 217 (2000), 13-41. Zbl 0973.35087, MR 1780769, 10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO;2-6
Reference: [11] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I.Springer, Berlin (1992). Zbl 0755.35001, MR 1156075
Reference: [12] Denk, R., Hieber, M., Prüss, J.: Optimal {$L^p$}-{$L^q$}-estimates for parabolic boundary value problems with inhomogeneous data.Math. Z. 257 (2007), 193-224. Zbl 1210.35066, MR 2318575, 10.1007/s00209-007-0120-9
Reference: [13] Dore, G.: {$L^p$} regularity for abstract differential equations.Functional Analysis and Related Topics Proc. Int. Conference, Kyoto University, 1991. Lect. Notes Math. 1540 Springer, Berlin H. Komatsu 25-38 (1993). MR 1225809
Reference: [14] Engel, K.-J.: The Laplacian on {$C(\overline\Omega)$} with generalized Wentzell boundary conditions.Arch. Math. 81 (2003), 548-558. Zbl 1064.47043, MR 2029716, 10.1007/s00013-003-0557-y
Reference: [15] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.Graduate Texts in Mathematics 194 Springer, Berlin (2000). Zbl 0952.47036, MR 1721989
Reference: [16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed.Classics in Mathematics Springer, Berlin (2001). Zbl 1042.35002, MR 1814364
Reference: [17] Griepentrog, J. A.: Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces.Adv. Differ. Equ. 12 (2007), 1031-1078. Zbl 1157.35023, MR 2351837
Reference: [18] Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including mixed boundary conditions.J. Differ. Equations 247 (2009), 1354-1396. Zbl 1178.35210, MR 2541414, 10.1016/j.jde.2009.06.001
Reference: [19] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type.Translations of Mathematical Monographs 23 American Mathematical Society, Providence (1968). MR 0241822
Reference: [20] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Singapore (1996). Zbl 0884.35001, MR 1465184
Reference: [21] Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. II.Die Grundlehren der mathematischen Wissenschaften, Band 182 Springer, Berlin (1972). Zbl 0227.35001, MR 0350178
Reference: [22] Nittka, R.: Quasilinear elliptic and parabolic Robin problems on Lipschitz domains.NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1125-1155. Zbl 1268.35021, MR 3057169, 10.1007/s00030-012-0201-2
Reference: [23] Nittka, R.: Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains.J. Differ. Equations 251 (2011), 860-880. Zbl 1225.35077, MR 2812574, 10.1016/j.jde.2011.05.019
Reference: [24] Nittka, R.: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains.PhD Thesis, University of Ulm (2010).
Reference: [25] Stepanoff, W.: Über einige Verallgemeinerungen der fast periodischen Funktionen.Math. Ann. 95 (1926), 473-498 German. MR 1512290, 10.1007/BF01206623
Reference: [26] Warma, M.: The Robin and Wentzell-Robin Laplacians on Lipschitz domains.Semigroup Forum 73 (2006), 10-30. Zbl 1168.35340, MR 2277314, 10.1007/s00233-006-0617-2
.

Files

Files Size Format View
CzechMathJ_64-2014-3_8.pdf 466.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo