Previous |  Up |  Next

Article

Title: Inserting measurable functions precisely (English)
Author: Gutiérrez García, Javier
Author: Kubiak, Tomasz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 743-749
Summary lang: English
.
Category: math
.
Summary: A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces. (English)
Keyword: insertion
Keyword: $\sigma $-topology
Keyword: $\sigma $-ring
Keyword: perfectness
Keyword: normality
Keyword: upper measurable function
Keyword: lower measurable function
Keyword: measurable function
MSC: 28A05
MSC: 28A20
idZBL: Zbl 06391521
idMR: MR3298556
DOI: 10.1007/s10587-014-0128-3
.
Date available: 2014-12-19T16:06:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144054
.
Reference: [1] Alexandroff, A. D.: Additive set-functions in abstract spaces. II.Rec. Math. Moscou, Nouvelle Série 9 (1941), 563-628. MR 0005785
Reference: [2] Blatter, J., Seever, G. L.: Interposition of semicontinuous functions by continuous functions.Analyse Fonctionnelle et Applications (Comptes Rendus Colloq. d'Analyse, Inst. Mat., Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 1972), Actualités Scientifiques et Industrielles, No. 1367 Hermann, Paris (1975), 27-51. Zbl 0318.54009, MR 0435793
Reference: [3] Bukovský, L.: The Structure of the Real Line.Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) 71 Birkhäuser, Basel (2011). Zbl 1219.26002, MR 2778559
Reference: [4] Gillman, L., Jerison, M.: Rings of Continuous Functions.Graduate Texts in Mathematics 43 Springer, New York (1976). Zbl 0327.46040, MR 0407579
Reference: [5] García, J. Gutiérrez, Kubiak, T.: A new look at some classical theorems on continuous functions on normal spaces.Acta Math. Hung. 119 (2008), 333-339. MR 2429294, 10.1007/s10474-007-7041-2
Reference: [6] Hausdorff, F.: Set Theory.(3rd ed.), Chelsea Publishing Company, New York (1978). Zbl 0488.04001, MR 0141601
Reference: [7] Katětov, M.: On real-valued functions in topological spaces.Fundam. Math. 38 (1951), 85-91; Fundam. Math. {\it40} (1953), 203-205 (Correction). Zbl 0045.25704, MR 0050264, 10.4064/fm-38-1-85-91
Reference: [8] Kotzé, W., Kubiak, T.: Insertion of a measurable function.J. Aust. Math. Soc., Ser. A 57 (1994), 295-304. Zbl 0851.54018, MR 1297004, 10.1017/S1446788700037708
Reference: [9] Lane, E. P.: Insertion of a continuous function.The Proceedings of the Topology Conference, Ohio Univ., Ohio, 1979, Topol. Proc. 4 (1979), 463-478. Zbl 0386.54006, MR 0598287
Reference: [10] Michael, E.: Continuous selections. I.Ann. Math. (2) 63 (1956), 361-382. Zbl 0071.15902, MR 0077107, 10.2307/1969615
Reference: [11] Sikorski, R.: Real Functions, Vol. 1.Monografie Matematyczne 35 Państwowe Wydawnictwo Naukowe, Warszawa Polish (1958). MR 0091312
Reference: [12] Stone, M. H.: Boundedness properties in function-lattices.Can. J. Math. 1 (1949), 176-186. Zbl 0032.16901, MR 0029091, 10.4153/CJM-1949-016-5
Reference: [13] Tong, H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289-292. Zbl 0046.16203, MR 0050265, 10.1215/S0012-7094-52-01928-5
Reference: [14] Yan, P.-F., Yang, E.-G.: Semi-stratifiable spaces and the insertion of semi-continuous functions.J. Math. Anal. Appl. 328 (2007), 429-437. Zbl 1117.54041, MR 2285560, 10.1016/j.jmaa.2006.05.043
.

Files

Files Size Format View
CzechMathJ_64-2014-3_9.pdf 236.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo