Previous |  Up |  Next

Article

Keywords:
insertion; $\sigma $-topology; $\sigma $-ring; perfectness; normality; upper measurable function; lower measurable function; measurable function
Summary:
A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.
References:
[1] Alexandroff, A. D.: Additive set-functions in abstract spaces. II. Rec. Math. Moscou, Nouvelle Série 9 (1941), 563-628. MR 0005785
[2] Blatter, J., Seever, G. L.: Interposition of semicontinuous functions by continuous functions. Analyse Fonctionnelle et Applications (Comptes Rendus Colloq. d'Analyse, Inst. Mat., Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 1972), Actualités Scientifiques et Industrielles, No. 1367 Hermann, Paris (1975), 27-51. MR 0435793 | Zbl 0318.54009
[3] Bukovský, L.: The Structure of the Real Line. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) 71 Birkhäuser, Basel (2011). MR 2778559 | Zbl 1219.26002
[4] Gillman, L., Jerison, M.: Rings of Continuous Functions. Graduate Texts in Mathematics 43 Springer, New York (1976). MR 0407579 | Zbl 0327.46040
[5] García, J. Gutiérrez, Kubiak, T.: A new look at some classical theorems on continuous functions on normal spaces. Acta Math. Hung. 119 (2008), 333-339. DOI 10.1007/s10474-007-7041-2 | MR 2429294
[6] Hausdorff, F.: Set Theory. (3rd ed.), Chelsea Publishing Company, New York (1978). MR 0141601 | Zbl 0488.04001
[7] Katětov, M.: On real-valued functions in topological spaces. Fundam. Math. 38 (1951), 85-91; Fundam. Math. {\it40} (1953), 203-205 (Correction). MR 0050264 | Zbl 0045.25704
[8] Kotzé, W., Kubiak, T.: Insertion of a measurable function. J. Aust. Math. Soc., Ser. A 57 (1994), 295-304. DOI 10.1017/S1446788700037708 | MR 1297004 | Zbl 0851.54018
[9] Lane, E. P.: Insertion of a continuous function. The Proceedings of the Topology Conference, Ohio Univ., Ohio, 1979, Topol. Proc. 4 (1979), 463-478. MR 0598287 | Zbl 0386.54006
[10] Michael, E.: Continuous selections. I. Ann. Math. (2) 63 (1956), 361-382. DOI 10.2307/1969615 | MR 0077107 | Zbl 0071.15902
[11] Sikorski, R.: Real Functions, Vol. 1. Monografie Matematyczne 35 Państwowe Wydawnictwo Naukowe, Warszawa Polish (1958). MR 0091312
[12] Stone, M. H.: Boundedness properties in function-lattices. Can. J. Math. 1 (1949), 176-186. DOI 10.4153/CJM-1949-016-5 | MR 0029091 | Zbl 0032.16901
[13] Tong, H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. DOI 10.1215/S0012-7094-52-01928-5 | MR 0050265 | Zbl 0046.16203
[14] Yan, P.-F., Yang, E.-G.: Semi-stratifiable spaces and the insertion of semi-continuous functions. J. Math. Anal. Appl. 328 (2007), 429-437. DOI 10.1016/j.jmaa.2006.05.043 | MR 2285560 | Zbl 1117.54041
Partner of
EuDML logo