| Title:
             | 
A Maschke type theorem for relative Hom-Hopf modules (English) | 
| Author:
             | 
Guo, Shuangjian | 
| Author:
             | 
Chen, Xiu-Li | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
64 | 
| Issue:
             | 
3 | 
| Year:
             | 
2014 | 
| Pages:
             | 
783-799 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals. (English) | 
| Keyword:
             | 
monoidal Hom-Hopf algebra | 
| Keyword:
             | 
separable functors | 
| Keyword:
             | 
Maschke type theorem | 
| Keyword:
             | 
total integral | 
| Keyword:
             | 
relative Hom-Hopf module | 
| MSC:
             | 
16T05 | 
| idZBL:
             | 
Zbl 06391525 | 
| idMR:
             | 
MR3298560 | 
| DOI:
             | 
10.1007/s10587-014-0132-7 | 
| . | 
| Date available:
             | 
2014-12-19T16:11:52Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144058 | 
| . | 
| Reference:
             | 
[1] Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras.Commun. Algebra 39 (2011), 2216-2240. Zbl 1255.16032, MR 2813174, 10.1080/00927872.2010.490800 | 
| Reference:
             | 
[2] Caenepeel, S., Militaru, G., Ion, B., Zhu, S.: Separable functors for the category of Doi-Hopf modules, applications.Adv. Math. 145 (1999), 239-290. Zbl 0943.18007, MR 1704577, 10.1006/aima.1998.1817 | 
| Reference:
             | 
[3] Doi, Y.: Hopf extensions of algebras and Maschke type theorems.Isr. J. Math. 72 (1990), 99-108. Zbl 0731.16025, MR 1098982, 10.1007/BF02764613 | 
| Reference:
             | 
[4] Doi, Y.: Algebras with total integrals.Commun. Algebra 13 (1985), 2137-2159. Zbl 0576.16004, MR 0801433 | 
| Reference:
             | 
[5] Doi, Y.: On the structure of relative Hopf modules.Commun. Algebra 11 (1983), 243-255. Zbl 0502.16009, MR 0688207, 10.1080/00927878308822847 | 
| Reference:
             | 
[6] Frégier, Y., Gohr, A.: On Hom-type algebras.J. Gen. Lie Theory Appl. 4 (2010), Article ID G101001, pages 16. Zbl 1281.17002, MR 2795570, 10.4303/jglta/G101001 | 
| Reference:
             | 
[7] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036 | 
| Reference:
             | 
[8] Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras.J. Algebra Appl. 9 (2010), 553-589. Zbl 1259.16041, MR 2718646, 10.1142/S0219498810004117 | 
| Reference:
             | 
[9] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206 | 
| Reference:
             | 
[10] Takeuchi, M.: Relative Hopf modules-equivalences and freeness criteria.J. Algebra 60 (1979), 452-471. Zbl 0492.16013, MR 0549940, 10.1016/0021-8693(79)90093-0 | 
| . |