Previous |  Up |  Next

Article

Title: A Maschke type theorem for relative Hom-Hopf modules (English)
Author: Guo, Shuangjian
Author: Chen, Xiu-Li
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 783-799
Summary lang: English
.
Category: math
.
Summary: Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals. (English)
Keyword: monoidal Hom-Hopf algebra
Keyword: separable functors
Keyword: Maschke type theorem
Keyword: total integral
Keyword: relative Hom-Hopf module
MSC: 16T05
idZBL: Zbl 06391525
idMR: MR3298560
DOI: 10.1007/s10587-014-0132-7
.
Date available: 2014-12-19T16:11:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144058
.
Reference: [1] Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras.Commun. Algebra 39 (2011), 2216-2240. Zbl 1255.16032, MR 2813174, 10.1080/00927872.2010.490800
Reference: [2] Caenepeel, S., Militaru, G., Ion, B., Zhu, S.: Separable functors for the category of Doi-Hopf modules, applications.Adv. Math. 145 (1999), 239-290. Zbl 0943.18007, MR 1704577, 10.1006/aima.1998.1817
Reference: [3] Doi, Y.: Hopf extensions of algebras and Maschke type theorems.Isr. J. Math. 72 (1990), 99-108. Zbl 0731.16025, MR 1098982, 10.1007/BF02764613
Reference: [4] Doi, Y.: Algebras with total integrals.Commun. Algebra 13 (1985), 2137-2159. Zbl 0576.16004, MR 0801433
Reference: [5] Doi, Y.: On the structure of relative Hopf modules.Commun. Algebra 11 (1983), 243-255. Zbl 0502.16009, MR 0688207, 10.1080/00927878308822847
Reference: [6] Frégier, Y., Gohr, A.: On Hom-type algebras.J. Gen. Lie Theory Appl. 4 (2010), Article ID G101001, pages 16. Zbl 1281.17002, MR 2795570, 10.4303/jglta/G101001
Reference: [7] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036
Reference: [8] Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras.J. Algebra Appl. 9 (2010), 553-589. Zbl 1259.16041, MR 2718646, 10.1142/S0219498810004117
Reference: [9] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206
Reference: [10] Takeuchi, M.: Relative Hopf modules-equivalences and freeness criteria.J. Algebra 60 (1979), 452-471. Zbl 0492.16013, MR 0549940, 10.1016/0021-8693(79)90093-0
.

Files

Files Size Format View
CzechMathJ_64-2014-3_13.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo