Previous |  Up |  Next

Article

Title: On generalized partial twisted smash products (English)
Author: Guo, Shuangjian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 767-782
Summary lang: English
.
Category: math
.
Summary: We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra. (English)
Keyword: partial bicomodule algebra
Keyword: partial twisted smash product
Keyword: partial bicoinvariant
Keyword: Morita context
MSC: 16S40
MSC: 16T05
idZBL: Zbl 06391524
idMR: MR3298559
DOI: 10.1007/s10587-014-0131-8
.
Date available: 2014-12-19T16:10:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144057
.
Reference: [1] Alves, M. M. S., Batista, E.: Enveloping actions for partial Hopf actions.Commun. Algebra 38 (2010), 2872-2902. Zbl 1226.16022, MR 2730285, 10.1080/00927870903095582
Reference: [2] Alves, M. M. S., Batista, E.: Globalization theorems for partial Hopf (co)actions, and some of their applications.Groups, Algebras and Applications. Proceedings of XVIII Latin American algebra colloquium, São Pedro, Brazil, 2009 C. Polcino Milies Contemporary Mathematics 537 American Mathematical Society, Providence (2011), 13-30. Zbl 1232.16020, MR 2799089, 10.1090/conm/537/10564
Reference: [3] Alves, M. M. S., Batista, E.: Partial Hopf actions, partial invariants and a Morita context.Algebra Discrete Math. 2009 (2009), 1-19. Zbl 1199.16059, MR 2640384
Reference: [4] Beattie, M., Dăscălescu, S., Raianu, Ş.: Galois extensions for co-Frobenius Hopf algebras.J. Algebra 198 (1997), 164-183. Zbl 0901.16017, MR 1482980, 10.1006/jabr.1997.7146
Reference: [5] Caenepeel, S., Janssen, K.: Partial (co)actions of Hopf algebras and partial Hopf-Galois theory.Commun. Algebra 36 (2008), 2923-2946. Zbl 1168.16021, MR 2440292, 10.1080/00927870802110334
Reference: [6] Dokuchaev, M., Exel, R.: Associativity of crossed products by partial actions, enveloping actions and partial representations.Trans. Am. Math. Soc. 357 (2005), 1931-1952. Zbl 1072.16025, MR 2115083, 10.1090/S0002-9947-04-03519-6
Reference: [7] Dokuchaev, M., Ferrero, M., Paques, A.: Partial actions and Galois theory.J. Pure Appl. Algebra 208 (2007), 77-87. Zbl 1142.13005, MR 2269829, 10.1016/j.jpaa.2005.11.009
Reference: [8] Exel, R.: Circle actions on $C^{*}$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence.J. Funct. Anal. 122 (1994), 361-401. MR 1276163, 10.1006/jfan.1994.1073
Reference: [9] Lomp, C.: Duality for partial group actions.Int. Electron. J. Algebra (electronic only) 4 (2008), 53-62. Zbl 1175.16020, MR 2417468
Reference: [10] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series W. A. Benjamin, New York (1969). Zbl 0203.31601, MR 0252485
.

Files

Files Size Format View
CzechMathJ_64-2014-3_12.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo