Previous |  Up |  Next

Article

Title: Linear recurrence sequences without zeros (English)
Author: Dubickas, Artūras
Author: Novikas, Aivaras
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 857-865
Summary lang: English
.
Category: math
.
Summary: Let $a_{d-1},\dots ,a_0 \in \mathbb Z$, where $d \in \mathbb N$ and $a_0 \neq 0$, and let $X=(x_n)_{n=1}^{\infty }$ be a sequence of integers given by the linear recurrence $x_{n+d}=a_{d-1}x_{n+d-1}+\dots +a_0x_{n}$ for $n=1,2,3,\dots $. We show that there are a prime number $p$ and $d$ integers $x_1,\dots ,x_d$ such that no element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined by the above linear recurrence is divisible by $p$. Furthermore, for any nonnegative integer $s$ there is a prime number $p \geq 3$ and $d$ integers $x_1,\dots ,x_d$ such that every element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined as above modulo $p$ belongs to the set $\{s+1,s+2,\dots ,p-s-1\}$. (English)
Keyword: linear recurrence sequence
Keyword: period modulo $p$
Keyword: polynomial splitting in $\mathbb F_p[z]$
MSC: 11B37
MSC: 11B50
MSC: 11T06
idZBL: Zbl 06391531
idMR: MR3298566
DOI: 10.1007/s10587-014-0138-1
.
Date available: 2014-12-19T16:20:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144064
.
Reference: [1] Adleman, L. M., Odlyzko, A. M.: Irreducibility testing and factorization of polynomials.Math. Comput. 41 (1983), 699-709. Zbl 0527.12002, MR 0717715, 10.1090/S0025-5718-1983-0717715-6
Reference: [2] Carroll, D., Jacobson, E., Somer, L.: Distribution of two-term recurrence sequences mod $p^e$.Fibonacci Q. 32 (1994), 260-265. MR 1285757
Reference: [3] Dubickas, A.: Distribution of some quadratic linear recurrence sequences modulo 1.Carpathian J. Math. 30 (2014), 79-86. MR 3244094
Reference: [4] Dubickas, A.: Arithmetical properties of powers of algebraic numbers.Bull. Lond. Math. Soc. 38 (2006), 70-80. Zbl 1164.11025, MR 2201605, 10.1112/S0024609305017728
Reference: [5] Dubickas, A.: On the distance from a rational power to the nearest integer.J. Number Theory 117 (2006), 222-239. Zbl 1097.11035, MR 2204744, 10.1016/j.jnt.2005.07.004
Reference: [6] Everest, G., Poorten, A. van der, Shparlinski, I., Ward, T.: Recurrence Sequences.Mathematical Surveys and Monographs 104 American Mathematical Society, Providence (2003). MR 1990179, 10.1090/surv/104/06
Reference: [7] Kaneko, H.: Limit points of fractional parts of geometric sequences.Unif. Distrib. Theory 4 (2009), 1-37. Zbl 1249.11066, MR 2557644
Reference: [8] Kaneko, H.: Distribution of geometric sequences modulo $1$.Result. Math. 52 (2008), 91-109. Zbl 1177.11060, MR 2430415, 10.1007/s00025-008-0287-3
Reference: [9] Lagarias, J. C., Odlyzko, A. M.: Effective versions of the Chebotarev density theorem.Algebraic Number Fields: $L$-Functions and Galois Properties Proc. Symp., Durham, 1975 A. Fröhlich Academic Press, London (1977), 409-464. Zbl 0362.12011, MR 0447191
Reference: [10] Laksov, D.: Linear recurring sequences over finite fields.Math. Scand. 16 (1965), 181-196. Zbl 0151.01502, MR 0194349, 10.7146/math.scand.a-10759
Reference: [11] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.Cambridge University Press Cambridge (1994). Zbl 0820.11072, MR 1294139
Reference: [12] Neukirch, J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften 322 Springer, Berlin (1999). Zbl 0956.11021, MR 1697859, 10.1007/978-3-662-03983-0
Reference: [13] Niederreiter, H., Schinzel, A., Somer, L.: Maximal frequencies of elements in second-order linear recurring sequences over a finite field.Elem. Math. 46 (1991), 139-143. Zbl 0747.11062, MR 1119645
Reference: [14] Ribenboim, P., Walsh, G.: The ABC conjecture and the powerful part of terms in binary recurring sequences.J. Number Theory 74 (1999), 134-147. Zbl 0923.11033, MR 1670556, 10.1006/jnth.1998.2315
Reference: [15] Schinzel, A.: Polynomials with special regard to reducibility.Encyclopedia of Mathematics and Its Applications 77 Cambridge University Press, Cambridge (2000). Zbl 0956.12001, MR 1770638
Reference: [16] Schinzel, A.: Special Lucas sequences, including the Fibonacci sequence, modulo a prime.A Tribute to Paul Erdős A. Baker, et al. Cambridge University Press Cambridge (1990), 349-357. Zbl 0716.11009, MR 1117027
Reference: [17] Somer, L.: Distribution of residues of certain second-order linear recurrences modulo $p$.Applications of Fibonacci Numbers, Vol. 3 G. E. Bergum, et al. Proc. 3rd Int. Conf., Pisa, 1988 Kluwer Academic Publishers Group, Dordrecht (1990), 311-324. Zbl 0722.11008, MR 1125803
Reference: [18] Somer, L.: Primes having an incomplete system of residues for a class of second-order recurrences.Applications of Fibonacci Numbers, Proc. 2nd Int. Conf. A. N. Philippou, et al. Kluwer Academic Publishers Dordrecht (1988), 113-141. Zbl 0653.10005, MR 0951911
Reference: [19] P. Stevenhagen, H. W. Lenstra, Jr.: Chebotarëv and his density theorem.Math. Intell. 18 (1996), 26-37. Zbl 0885.11005, MR 1395088, 10.1007/BF03027290
Reference: [20] Voloch, J. F.: Chebyshev's method for number fields.J. Théor. Nombres Bordx. 12 (2000), 81-85. Zbl 1007.11069, 10.5802/jtnb.266
Reference: [21] Zaïmi, T.: An arithmetical property of powers of Salem numbers.J. Number Theory 120 (2006), 179-191. Zbl 1147.11037, MR 2256803, 10.1016/j.jnt.2005.11.012
Reference: [22] Zheng, Q.-X., Qi, W.-F., Tian, T.: On the distinctness of modular reductions of primitive sequences over ${\mathbb Z}/(2^{32}-1)$.Des. Codes Cryptography 70 (2014), 359-368. MR 3160735, 10.1007/s10623-012-9698-y
Reference: [23] Zhuravleva, V.: Diophantine approximations with Fibonacci numbers.J. Théor. Nombres Bordx. 25 (2013), 499-520. Zbl 1283.11102, MR 3228318, 10.5802/jtnb.846
Reference: [24] Zhuravleva, V.: On the two smallest Pisot numbers.Math. Notes 94 (2013), 820-823 translation from Mat. Zametki 94 784-787 (2013). Zbl 1284.11106, MR 3227021, 10.1134/S0001434613110163
.

Files

Files Size Format View
CzechMathJ_64-2014-3_19.pdf 255.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo