Previous |  Up |  Next

Article

Title: On representations of restricted Lie superalgebras (English)
Author: Yao, Yu-Feng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 845-856
Summary lang: English
.
Category: math
.
Summary: Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type $A(n|0)$, the baby Verma modules $Z_{\chi }(\lambda )$ are proved to be simple for any regular nilpotent $p$-character $\chi $ and typical weight $\lambda $. Moreover, we obtain the dimension formulas for projective covers of simple modules with $p$-characters of standard Levi form. (English)
Keyword: restricted Lie superalgebra
Keyword: $\chi $-reduced representation
Keyword: indecomposable module
Keyword: simple module
Keyword: $p$-character
MSC: 17B10
MSC: 17B35
MSC: 17B50
idZBL: Zbl 06391530
idMR: MR3298565
DOI: 10.1007/s10587-014-0137-2
.
Date available: 2014-12-19T16:18:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144063
.
Reference: [1] Brundan, J.: Modular representations of the supergroup $Q(n)$. II.Pac. J. Math. 224 65-90 (2006). Zbl 1122.20022, MR 2231652, 10.2140/pjm.2006.224.65
Reference: [2] Brundan, J., Kleshchev, A.: Modular representations of the supergroup $Q(n)$. I.J. Algebra 260 64-98 (2003). Zbl 1027.17004, MR 1973576, 10.1016/S0021-8693(02)00620-8
Reference: [3] Brundan, J., Kleshchev, A.: Projective representations of symmetric groups via Sergeev duality.Math. Z. 239 27-68 (2002). Zbl 1029.20008, MR 1879328, 10.1007/s002090100282
Reference: [4] Brundan, J., Kujawa, J.: A new proof of the Mullineux conjecture.J. Algebr. Comb. 18 13-39 (2003). Zbl 1043.20006, MR 2002217, 10.1023/A:1025113308552
Reference: [5] Friedlander, E. M., Parshall, B. J.: Modular representation theory of Lie algebras.Am. J. Math. 110 1055-1093 (1988). Zbl 0673.17010, MR 0970120, 10.2307/2374686
Reference: [6] Jacobson, N.: Lie Algebras.Interscience Tracts in Pure and Applied Mathematics 10 Interscience Publishers (a division of John Wiley & Sons), New York (1962). Zbl 0121.27504, MR 0143793
Reference: [7] Jantzen, J. C.: Representations of Lie algebras in prime characteristic. (Notes by Ian Gordon). A. Broer et al. Representation Theories and Algebraic Geometry NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514 Kluwer Academic Publishers, Dordrecht 185-235 (1998). Zbl 0974.17022, MR 1649627
Reference: [8] Kac, V. G.: Lie superalgebras.Adv. Math. 26 8-96 (1977). Zbl 0367.17007, MR 0486011, 10.1016/0001-8708(77)90017-2
Reference: [9] Kujawa, J.: The Steinberg tensor product theorem for $ {GL}(m|n)$.G. Benkart et al. Representations of Algebraic Groups, Quantum Groups, and Lie Algebras. AMS-IMS-SIAM Joint Summer Research Conference, Snowbird, USA, 2004 Contemp. Math. 413 AMS, Providence 123-132 (2006). Zbl 1127.20032, MR 2263092
Reference: [10] Petrogradski, V. M.: Identities in the enveloping algebras for modular Lie superalgebras.J. Algebra 145 1-21 (1992). MR 1144655, 10.1016/0021-8693(92)90173-J
Reference: [11] Shu, B., Wang, W.: Modular representations of the ortho-symplectic supergroups.Proc. Lond. Math. Soc. (3) 96 251-271 (2008). Zbl 1219.20031, MR 2392322, 10.1112/plms/pdm040
Reference: [12] Shu, B., Yao, Y.-F.: Character formulas for restricted simple modules of the special superalgebras.Math. Nachr. 285 1107-1116 (2012). Zbl 1293.17022, MR 2928401, 10.1002/mana.201000064
Reference: [13] Shu, B., Zhang, C.: Representations of the restricted Cartan type Lie superalgebra $W(m,n,1)$.Algebr. Represent. Theory 14 463-481 (2011). Zbl 1281.17020, MR 2785918, 10.1007/s10468-009-9198-6
Reference: [14] Shu, B., Zhang, C.: Restricted representations of the Witt superalgebras.J. Algebra 324 652-672 (2010). Zbl 1217.17010, MR 2651562, 10.1016/j.jalgebra.2010.04.032
Reference: [15] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. I.Proc. Lond. Math. Soc. 99 145-167 (2009). Zbl 1176.17013, MR 2520353, 10.1112/plms/pdn057
Reference: [16] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. II.The queer series. J. Pure Appl. Algebra 215 2515-2532 (2011). Zbl 1225.17021, MR 2793955, 10.1016/j.jpaa.2011.02.011
Reference: [17] Yao, Y.-F.: Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type.Sci. China, Math. 56 239-252 (2013). Zbl 1275.17034, MR 3015372, 10.1007/s11425-012-4486-8
Reference: [18] Yao, Y.-F.: On restricted representations of the extended special type Lie superalgebra ${\bar{S}(m, n, 1)}$.Monatsh. Math. 170 239-255 (2013). MR 3041742, 10.1007/s00605-012-0414-9
Reference: [19] Yao, Y.-F., Shu, B.: Restricted representations of Lie superalgebras of Hamiltonian type.Algebr. Represent. Theory 16 615-632 (2013). MR 3049662, 10.1007/s10468-011-9322-2
Reference: [20] Zhang, C.: On the simple modules for the restricted Lie superalgebra $\mathop sl(n|1)$.J. Pure Appl. Algebra 213 756-765 (2009). MR 2494368, 10.1016/j.jpaa.2008.09.005
Reference: [21] Zhang, Y.-Z., Liu, W.-D.: Modular Lie Superalgebras.Scientific Press Beijing, 2001 Chinese. Zbl 1163.17019
.

Files

Files Size Format View
CzechMathJ_64-2014-3_18.pdf 282.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo