Previous |  Up |  Next

Article

Title: Effective homology for homotopy colimit and cofibrant replacement (English)
Author: Filakovský, Marek
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 273-286
Summary lang: English
.
Category: math
.
Summary: We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets $X \colon \mathcal{I}\rightarrow \mbox{sSet}$ such that each simplicial set $X(i)$ has effective homology, we present an algorithm computing the homotopy colimit $\mbox{hocolim}\,X$ as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement $X^{\mbox{cof}}$ of $X$ as a diagram with effective homology. This is applied to computing of equivariant cohomology operations. (English)
Keyword: homotopy colimit
Keyword: cofibrant replacement
Keyword: effective homology
Keyword: equivariant
MSC: 55N91
MSC: 55U15
idZBL: Zbl 06487012
idMR: MR3303777
DOI: 10.5817/AM2014-5-273
.
Date available: 2015-01-07T14:53:36Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144070
.
Reference: [1] Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations.Lecture Notes in Math., no. 304, Springer, 1972. Zbl 0259.55004, MR 0365573, 10.1007/978-3-540-38117-4_12
Reference: [2] Bredon, G.: Equivariant cohomology theories.Lecture Notes in Math., no. 34, Springer-Verlag, Berlin-New York, 1967. Zbl 0162.27202, MR 0214062
Reference: [3] Brown, R.: The twisted Eilenberg-Zilber theorem.1965 Simposio di Topologia (Messina, 1964), 1965, pp. 33–37. MR 0220273
Reference: [4] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere.J. ACM 61 (2014), article no. 17. Zbl 1295.68196, MR 3215297, 10.1145/2597629
Reference: [5] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial time computation of homotopy groups and Postnikov systems in fixed dimensions.SIAM J. Comput. 43 (2014), 1728–1780. MR 3268623, 10.1137/120899029
Reference: [6] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of lifting extension problem.arXiv:1307.6444, 2013.
Reference: [7] Dugger, D.: A primer on homotopy colimits.http://math.uoregon.edu/~ddugger/hocolim.pdf, 2008.
Reference: [8] Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories.Math. Surveys Monogr., vol. 113, American Mathematical Society, Providence, 2004. Zbl 1072.18012, MR 2102294
Reference: [9] Dwyer, W.G., Kan, D.M.: An obstruction theory for diagrams of simplicial sets.Nederl. Akad. Wetensch. Indag. Math. 46 (2) (1984), 139–146. Zbl 0555.55018, MR 0749527, 10.1016/1385-7258(84)90015-5
Reference: [10] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, I., Ann. of Math. (2) 58 (1953), 55–106. Zbl 0050.39304, MR 0056295
Reference: [11] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, II., Ann. of Math. (2) 60 (1954), 49–139. Zbl 0055.41704, MR 0065163
Reference: [12] Elmendorf, A.D.: Systems of fixed points sets.Trans. Amer. Math. Soc. 277 (1983), 275–284. MR 0690052, 10.1090/S0002-9947-1983-0690052-0
Reference: [13] Filakovský, M., Vokřínek, L.: Are two maps homotopic? An algorithmic viewpoint.arXiv:1312.2337, 2013.
Reference: [14] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory.Birkhauser, Boston-Basel-Berlin, 1999. Zbl 0949.55001, MR 1711612
Reference: [15] Gugenheim, V.K.A.M.: On the chain-complex of a fibration.Illinois J. Math. 16 (1972), 398–414. Zbl 0238.55015, MR 0301736
Reference: [16] Heras, J.: Effective homology for the pushout of simplicial sets.Proceedings XII Encuentros de Algebra Computacional y Aplicaciones (EACA 2010), 2010, pp. 152–156.
Reference: [17] Isaacson, S.B.: Exercises on homotopy colimits.http://math.mit.edu/~mbehrens/TAGS/Isaacson_exer.pdf.
Reference: [18] Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial-time homology for simplicial Eilenberg-MacLane spaces.arXiv:1201.6222, 2012. Zbl 1295.68201, MR 3124946
Reference: [19] May, J.P.: Simplicial Objects in Algebraic Topology.Chicago Lectures in Math., Univ. Chicago Press, 1992, 1992 reprint of 1967 original. Zbl 0769.55001, MR 1206474
Reference: [20] May, J.P., Piacenza, R.J., Cole, M.: Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza.Providence, R.I.: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1996. MR 1413302
Reference: [21] Riehl, E.: Categorical Homotopy Theory.Cambridge University Press, 2014. MR 3221774
Reference: [22] Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications.Tech. report, Written in 2006 for a MAP Summer School at the University of Genova, 2012, arXiv:1208.3816v2.
Reference: [23] Shih, W.: Homologie des espaces fibrés.Publications Mathématiques de l'IHÉS 13 (1962), 5–87. Zbl 0105.16903, MR 0144348
Reference: [24] Stephan, M.: On equivariant homotopy theory for model categories.arXiv:1308.0856, 2013.
.

Files

Files Size Format View
ArchMathRetro_050-2014-5_4.pdf 560.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo