Title:
|
Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations (English) |
Author:
|
Zhang, Tie |
Author:
|
Zhang, Shuhua |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
1-20 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis. (English) |
Keyword:
|
discontinuous Galerkin method |
Keyword:
|
advection-reaction equation |
Keyword:
|
optimal convergence rate |
Keyword:
|
a posteriori error estimate |
MSC:
|
65M60 |
MSC:
|
65N15 |
MSC:
|
65N30 |
idZBL:
|
Zbl 06391459 |
idMR:
|
MR3299870 |
DOI:
|
10.1007/s10492-015-0082-x |
. |
Date available:
|
2015-01-09T13:52:20Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144089 |
. |
Reference:
|
[1] Achchab, B., Achchab, S., Agouzal, A.: Some remarks about the hierarchical a posteriori error estimate.Numer. Methods Partial Differ. Equations 20 (2004), 919-932. Zbl 1059.65097, MR 2092413, 10.1002/num.20016 |
Reference:
|
[2] Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids.M2AN, Math. Model. Numer. Anal. 37 (2003), 209-225. Zbl 1047.65099, MR 1991197, 10.1051/m2an:2003023 |
Reference:
|
[3] Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart-Thomas element.SIAM J. Numer. Anal. 33 (1996), 2431-2444. Zbl 0866.65071, MR 1427472, 10.1137/S0036142994264079 |
Reference:
|
[4] Burman, E.: A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation.SIAM J. Numer. Anal. 47 (2009), 3584-3607. Zbl 1205.65249, MR 2576512, 10.1137/080733899 |
Reference:
|
[5] Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 1437-1453. Zbl 1085.76033, MR 2068903, 10.1016/j.cma.2003.12.032 |
Reference:
|
[6] Cairlet, P. G.: The Finite Element Methods for Elliptic Problems. Repr., unabridged republ. of the orig. 1978.Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). MR 1930132 |
Reference:
|
[7] Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes.SIAM J. Numer. Anal. 46 (2008), 1250-1265. Zbl 1168.65058, MR 2390992, 10.1137/060677215 |
Reference:
|
[8] Dörfler, W., Nochetto, R. H.: Small data oscillation implies the saturation assumption.Numer. Math. 91 (2002), 1-12. Zbl 0995.65109, MR 1896084, 10.1007/s002110100321 |
Reference:
|
[9] Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems.Math. Comput. 60 (1993), 167-188. Zbl 0795.65074, MR 1149289, 10.1090/S0025-5718-1993-1149289-9 |
Reference:
|
[10] Ern, A., Guermond, J.-L.: Discontinuous Galerkin methods for Friedrichs' systems. I. General Theory.SIAM J. Numer. Anal. 44 (2006), 753-778. Zbl 1122.65111, MR 2218968, 10.1137/050624133 |
Reference:
|
[11] Friedrichs, K. O.: Symmetric positive linear differential equations.Commun. Pure Appl. Math. 11 (1958), 333-418. Zbl 0083.31802, MR 0100718, 10.1002/cpa.3160110306 |
Reference:
|
[12] Houston, P., Rannacher, R., Süli, E.: A posteriori error analysis for stabilised finite element approximations of transport problems.Comput. Methods Appl. Mech. Eng. 190 (2000), 1483-1508. Zbl 0970.65115, MR 1807010, 10.1016/S0045-7825(00)00174-2 |
Reference:
|
[13] Houston, P., Süli, E.: $hp$-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems.SIAM J. Sci. Comput. 23 (2001), 1226-1252. Zbl 1029.65130, MR 1885599, 10.1137/S1064827500378799 |
Reference:
|
[14] Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.Math. Comput. 46 (1986), 1-26. Zbl 0618.65105, MR 0815828, 10.1090/S0025-5718-1986-0815828-4 |
Reference:
|
[15] Lasaint, P., Raviart, P. A.: On a finite element method for solving the neutron transport equation.Proc. Symp. Math. Aspects Finite Elem. Partial Differ. Equat., Madison 1974 Academic Press New York (1974), 89-123. Zbl 0341.65076, MR 0658142 |
Reference:
|
[16] Peterson, T. E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation.SIAM J. Numer. Anal. 28 (1991), 133-140. Zbl 0729.65085, MR 1083327, 10.1137/0728006 |
Reference:
|
[17] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation.Tech. Report LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973. |
Reference:
|
[18] Richter, G. R.: An optimal-order error estimate for the discontinuous Galerkin method.Math. Comput. 50 (1988), 75-88. Zbl 0643.65059, MR 0917819, 10.1090/S0025-5718-1988-0917819-3 |
Reference:
|
[19] Richter, G. R.: On the order of convergence of the discontinuous Galerkin method for hyperbolic equations.Math. Comput. 77 (2008), 1871-1885. Zbl 1198.65196, MR 2429867, 10.1090/S0025-5718-08-02126-1 |
Reference:
|
[20] Verfürth, R.: A posteriori error estimators for convection-diffusion equations.Numer. Math. 80 (1998), 641-663. Zbl 0913.65095, MR 1650051, 10.1007/s002110050381 |
. |