Previous |  Up |  Next

Article

Title: Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations (English)
Author: Zhang, Tie
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 1
Year: 2015
Pages: 1-20
Summary lang: English
.
Category: math
.
Summary: We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis. (English)
Keyword: discontinuous Galerkin method
Keyword: advection-reaction equation
Keyword: optimal convergence rate
Keyword: a posteriori error estimate
MSC: 65M60
MSC: 65N15
MSC: 65N30
idZBL: Zbl 06391459
idMR: MR3299870
DOI: 10.1007/s10492-015-0082-x
.
Date available: 2015-01-09T13:52:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144089
.
Reference: [1] Achchab, B., Achchab, S., Agouzal, A.: Some remarks about the hierarchical a posteriori error estimate.Numer. Methods Partial Differ. Equations 20 (2004), 919-932. Zbl 1059.65097, MR 2092413, 10.1002/num.20016
Reference: [2] Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids.M2AN, Math. Model. Numer. Anal. 37 (2003), 209-225. Zbl 1047.65099, MR 1991197, 10.1051/m2an:2003023
Reference: [3] Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart-Thomas element.SIAM J. Numer. Anal. 33 (1996), 2431-2444. Zbl 0866.65071, MR 1427472, 10.1137/S0036142994264079
Reference: [4] Burman, E.: A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation.SIAM J. Numer. Anal. 47 (2009), 3584-3607. Zbl 1205.65249, MR 2576512, 10.1137/080733899
Reference: [5] Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 1437-1453. Zbl 1085.76033, MR 2068903, 10.1016/j.cma.2003.12.032
Reference: [6] Cairlet, P. G.: The Finite Element Methods for Elliptic Problems. Repr., unabridged republ. of the orig. 1978.Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). MR 1930132
Reference: [7] Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes.SIAM J. Numer. Anal. 46 (2008), 1250-1265. Zbl 1168.65058, MR 2390992, 10.1137/060677215
Reference: [8] Dörfler, W., Nochetto, R. H.: Small data oscillation implies the saturation assumption.Numer. Math. 91 (2002), 1-12. Zbl 0995.65109, MR 1896084, 10.1007/s002110100321
Reference: [9] Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems.Math. Comput. 60 (1993), 167-188. Zbl 0795.65074, MR 1149289, 10.1090/S0025-5718-1993-1149289-9
Reference: [10] Ern, A., Guermond, J.-L.: Discontinuous Galerkin methods for Friedrichs' systems. I. General Theory.SIAM J. Numer. Anal. 44 (2006), 753-778. Zbl 1122.65111, MR 2218968, 10.1137/050624133
Reference: [11] Friedrichs, K. O.: Symmetric positive linear differential equations.Commun. Pure Appl. Math. 11 (1958), 333-418. Zbl 0083.31802, MR 0100718, 10.1002/cpa.3160110306
Reference: [12] Houston, P., Rannacher, R., Süli, E.: A posteriori error analysis for stabilised finite element approximations of transport problems.Comput. Methods Appl. Mech. Eng. 190 (2000), 1483-1508. Zbl 0970.65115, MR 1807010, 10.1016/S0045-7825(00)00174-2
Reference: [13] Houston, P., Süli, E.: $hp$-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems.SIAM J. Sci. Comput. 23 (2001), 1226-1252. Zbl 1029.65130, MR 1885599, 10.1137/S1064827500378799
Reference: [14] Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.Math. Comput. 46 (1986), 1-26. Zbl 0618.65105, MR 0815828, 10.1090/S0025-5718-1986-0815828-4
Reference: [15] Lasaint, P., Raviart, P. A.: On a finite element method for solving the neutron transport equation.Proc. Symp. Math. Aspects Finite Elem. Partial Differ. Equat., Madison 1974 Academic Press New York (1974), 89-123. Zbl 0341.65076, MR 0658142
Reference: [16] Peterson, T. E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation.SIAM J. Numer. Anal. 28 (1991), 133-140. Zbl 0729.65085, MR 1083327, 10.1137/0728006
Reference: [17] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation.Tech. Report LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973.
Reference: [18] Richter, G. R.: An optimal-order error estimate for the discontinuous Galerkin method.Math. Comput. 50 (1988), 75-88. Zbl 0643.65059, MR 0917819, 10.1090/S0025-5718-1988-0917819-3
Reference: [19] Richter, G. R.: On the order of convergence of the discontinuous Galerkin method for hyperbolic equations.Math. Comput. 77 (2008), 1871-1885. Zbl 1198.65196, MR 2429867, 10.1090/S0025-5718-08-02126-1
Reference: [20] Verfürth, R.: A posteriori error estimators for convection-diffusion equations.Numer. Math. 80 (1998), 641-663. Zbl 0913.65095, MR 1650051, 10.1007/s002110050381
.

Files

Files Size Format View
AplMat_60-2015-1_1.pdf 325.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo