Previous |  Up |  Next

Article

Title: Two phase flow arising in hydraulics (English)
Author: Straškraba, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 1
Year: 2015
Pages: 21-33
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to proceed in the study of the system which will be specified below. The system concerns fluid flow in a simple hydraulic system consisting of a pipe with generator on one side and a valve or some more complicated hydraulic elements on the other end of the pipe. The purpose of the research is a rigorous mathematical analysis of the corresponding linearized system. Here, we analyze the linearized problem near the fixed steady state which already have been explicitly described. The theory of mixed linear partial differential systems and other tools are applied to derive as explicit form of the solution as possible. (English)
Keyword: compressible fluid
Keyword: Navier-Stokes equations
Keyword: hydraulic systems
MSC: 35L45
MSC: 35L50
MSC: 35Q35
MSC: 76T10
idZBL: Zbl 06391460
idMR: MR3299871
DOI: 10.1007/s10492-015-0083-9
.
Date available: 2015-01-09T13:53:41Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144092
.
Reference: [1] Čarnyj, I. A.: Unsteady Motion of Real Fluid in Pipes.Nedra, Moscow (1975).
Reference: [2] Evans, L. C.: Entropy and Partial Differential Equations.Department of Mathematics, UC Berkeley (2008). MR 2597943
Reference: [3] Glikson, A.: Some case of non-uniform and non-steady state of gas-mixture.Rend. Mat., VI. Ser. 3 451-479 (1970).
Reference: [4] Landau, L. D., Akhiezer, A. I., Lifshitz, E. M.: General Physics Mechanics and Molecular Physics.Nauka, Moscow (1969).
Reference: [5] Rajagopal, K. R., Tao, L.: Mechanics of Mixtures.Series on Advances in Mathematics for Applied Sciences 35 World Scientific, Singapore (1995). Zbl 0941.74500, MR 1370661
Reference: [6] Ruzicka, M. C.: On bubbles rising in line.Int. J. Multiphase Flow 26 (2000), 1141-1181. Zbl 1137.76730, 10.1016/S0301-9322(99)00078-6
Reference: [7] Šklíba, J., Straškraba, I., Štengl, M.: Extended mathematical model of safety hydraulic circuit.Report SVÚSS Běchovice, Czech Republic registered as: SVÚSS 88-03022, December 1988.
Reference: [8] Soo, S. L.: Fluid Dynamics of Multiphase Systems.Blaisdell Publishing Company. A Division of Ginn and Company Waltham, Ma.-Toronto-London (1967). Zbl 0173.52901
Reference: [9] Straškraba, I.: Fully nonlinear two-phase flow.Acta Technica 3 (2014), 215-220. MR 3243606
Reference: [10] Straškraba, I., Vitásek, E.: The flow of a liquid with cavitation.J. Concr. Appl. Math. 8 (2010), 668-681. MR 2641512
Reference: [11] Wallis, G. B.: One-Dimensional Two Phase Flows.McGraw-Hill, New York (1969).
.

Files

Files Size Format View
AplMat_60-2015-1_2.pdf 254.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo