Previous |  Up |  Next

Article

Title: Analysis of a non-monotone smoothing-type algorithm for the second-order cone programming (English)
Author: Tang, Jingyong
Author: Dong, Li
Author: Fang, Liang
Author: Sun, Li
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 1
Year: 2015
Pages: 35-49
Summary lang: English
.
Category: math
.
Summary: The smoothing-type algorithm is a powerful tool for solving the second-order cone programming (SOCP), which is in general designed based on a monotone line search. In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-monotone line search. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. The preliminary numerical results are also reported which indicate that the non-monotone smoothing-type algorithm is promising for solving the SOCP. (English)
Keyword: second-order cone programming
Keyword: smoothing Newton algorithm
Keyword: non-monotone line search
Keyword: convergence
MSC: 17C55
MSC: 65K05
MSC: 90C25
MSC: 90C30
idZBL: Zbl 06391461
idMR: MR3299872
DOI: 10.1007/s10492-015-0084-8
.
Date available: 2015-01-09T13:55:39Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144093
.
Reference: [1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5
Reference: [2] Chi, X., Liu, S.: A non-interior continuation method for second-order cone programming.Optimization 58 (2009), 965-979. Zbl 1177.90318, MR 2572781, 10.1080/02331930701763421
Reference: [3] Chi, X., Liu, S.: A one-step smoothing Newton method for second-order cone programming.J. Comput. Appl. Math. 223 (2009), 114-123. Zbl 1155.65045, MR 2463105, 10.1016/j.cam.2007.12.023
Reference: [4] Clarke, F. H.: Optimization and Nonsmooth Analysis.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons New York (1983); reprinted by SIAM, Philadelphia, 1990. Zbl 0696.49002, MR 1058436
Reference: [5] Fang, L., Feng, Z.: A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function.Comput. Appl. Math. 30 (2011), 569-588. MR 2863924, 10.1590/S1807-03022011000300005
Reference: [6] Fang, L., He, G., Hu, Y.: A new smoothing Newton-type method for second-order cone programming problems.Appl. Math. Comput. 215 (2009), 1020-1029. Zbl 1183.65065, MR 2568957, 10.1016/j.amc.2009.06.029
Reference: [7] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems.SIAM J. Optim. 12 (2002), 436-460. MR 1885570, 10.1137/S1052623400380365
Reference: [8] Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton's method.SIAM J. Numer. Anal. 23 (1986), 707-716. Zbl 0616.65067, MR 0849278, 10.1137/0723046
Reference: [9] Hu, S.-L., Huang, Z.-H., Wang, P.: A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems.Optim. Methods Softw. 24 (2009), 447-460. Zbl 1173.90552, MR 2533101, 10.1080/10556780902769862
Reference: [10] Huang, Z. H., Han, J., Chen, Z.: Predictor-corrector smoothing Newton method, based on a new smoothing function, for solving the nonlinear complementarity problem with a $P_0$-function.J. Optimization Theory Appl. 117 (2003), 39-68. Zbl 1044.90081, MR 1990070, 10.1023/A:1023648305969
Reference: [11] Huang, Z. H., Hu, S. L., Han, J.: Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search.Sci. China, Ser. A 52 (2009), 833-848. Zbl 1203.90123, MR 2504979, 10.1007/s11425-008-0170-4
Reference: [12] Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones.Comput. Optim. Appl. 45 (2010), 557-579. Zbl 1198.90373, MR 2600896, 10.1007/s10589-008-9180-y
Reference: [13] Liu, X.-H., Huang, Z.-H.: A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones.Math. Methods Oper. Res. 70 (2009), 385-404. Zbl 1175.90290, MR 2558418, 10.1007/s00186-008-0274-1
Reference: [14] Liu, Y.-J., Zhang, L.-W., Wang, Y.-H.: Analysis of a smoothing method for symmetric conic linear programming.J. Appl. Math. Comput. 22 (2006), 133-148. Zbl 1132.90353, MR 2248446, 10.1007/BF02896466
Reference: [15] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.Linear Algebra Appl. 284 (1998), 193-228. Zbl 0946.90050, MR 1655138
Reference: [16] Ni, T., Wang, P.: A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search.Appl. Math. Comput. 216 (2010), 2207-2214. Zbl 1194.65080, MR 2647089, 10.1016/j.amc.2010.03.058
Reference: [17] Pan, S., Chen, J.-S.: A damped Gauss-Newton method for the second-order cone complementarity problem.Appl. Math. Optim. 59 (2009), 293-318. Zbl 1169.49031, MR 2491700, 10.1007/s00245-008-9054-9
Reference: [18] Tang, J., He, G., Dong, L., Fang, L.: A smoothing Newton method for second-order cone optimization based on a new smoothing function.Appl. Math. Comput. 218 (2011), 1317-1329. Zbl 1229.65101, MR 2831640, 10.1016/j.amc.2011.06.015
Reference: [19] Tang, J., He, G., Dong, L., Fang, L.: A new one-step smoothing Newton method for second-order cone programming.Appl. Math., Praha 57 (2012), 311-331. Zbl 1265.90229, MR 2984606, 10.1007/s10492-012-0019-6
Reference: [20] Zhang, H., Hager, W. W.: A nonmonotone line search technique and its application to unconstrained optimization.SIAM J. Optim. 14 (2004), 1043-1056. Zbl 1073.90024, MR 2112963, 10.1137/S1052623403428208
.

Files

Files Size Format View
AplMat_60-2015-1_3.pdf 283.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo