Previous |  Up |  Next


data envelopment analysis (DEA); interval data; interval DEA model; common weight
The traditional data envelopment analysis (DEA) model can evaluate the relative efficiencies of a set of decision making units (DMUs) with exact values. But it cannot handle imprecise data. Imprecise data, for example, can be expressed in the form of the interval data or mixtures of interval data and exact data. In order to solve this problem, this study proposes three new interval DEA models from different points of view. Two examples are presented to illustrate and validate these models.
[1] Angiz, M. Z., Emrouznejad, L. A., Mustafa, A., Al-Eraqi, A. S.: Aggregating preference ranking with fuzzy data envelopment analysis. Knowledge-Based Systems 23 (2010), 512-519. DOI 10.1016/j.knosys.2010.03.008
[2] Braglia, M., Petroni, A.: Evaluating and selecting investments in industrial robots. Int. J. Product. Res. 37 (1999), 4157-4178. DOI 10.1080/002075499189718 | Zbl 0948.90551
[3] Charnes, A., Cooper, W. W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978), 429-444. DOI 10.1016/0377-2217(78)90138-8 | MR 0525905 | Zbl 0425.90086
[4] Co, H. C., Chew, K. S.: Performance and R&D expenditures in American and Japanese manufacturing firms. Int. J. Product. Res. 35 (1997), 3333-3348. DOI 10.1080/002075497194101 | Zbl 0943.90516
[5] Cooper, W. W., Park, K. S., Yu, G.: An illustrative application of IDEA (imprecise data envelopment analysis) to a Korean mobile telecommunication company. Oper. Res. 49 (2011), 807-820. DOI 10.1287/opre.49.6.807.10022 | Zbl 1163.90539
[6] Despotis, D. K., Smirlis, Y. G.: Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002), 24-36. DOI 10.1016/S0377-2217(01)00200-4 | MR 1894083 | Zbl 1030.90055
[7] Haghighat, M. S., Khorram, E.: The maximum and minimum number of efficient units in DEA with interval data. Appl. Math. Comput. 163 (2004), 919-930. DOI 10.1016/j.amc.2004.04.018 | MR 2121837 | Zbl 1116.90380
[8] Jahanshahloo, G. R., Lofti, F. Hosseinzadeh, Moradi, M.: Sensitivity and stability analysis in DEA with interval data. Appl. Math. Comput. 156 (2004), 463-477. DOI 10.1016/j.amc.2003.08.005 | MR 2087523
[9] Jahanshahloo, G. R., Matin, R. K., Vencheh, A. H.: On return to scale offully effcient DMUs in data envelopment analysis under interval data. Appl. Math. Comput. 154 (2004), 31-40. DOI 10.1016/S0096-3003(03)00687-8 | MR 2066177
[10] Jahanshahloo, G. R., Matin, R. K., Vencheh, A. H.: On FDH effciency analysis with interval data. Appl. Math. Comput. 159 (2004), 47-55. DOI 10.1016/j.amc.2003.08.127 | MR 2094956
[11] Kim, S. H., Park, C. G., Park, K. S.: An application ofdata envelopment analysis in telephone offices evaluation with partial data. Comput. Oper. Res. 26 (1999), 59-72. DOI 10.1016/S0305-0548(98)00041-0
[12] Lai, M. C., Huang, H. C., Wang, W. K.: Designing a knowledge-based system for benchmarking: A DEA approach. Knowledge-Based Syst. 24 (2011), 662-671. DOI 10.1016/j.knosys.2011.02.006
[13] Lee, Y. K., Park, K. S., Kim, S. H.: Identification of inefficiencies in an additive model based IDEA (imprecise data envelopment analysis). Comput. Oper. Res. 29 (2002), 1661-1676. DOI 10.1016/S0305-0548(01)00049-1 | MR 1906726
[14] Sun, S.: Assessing computer numerical control machines using data envelopment analysis. Int. J. Product. Res. 40 (2002), 2011-2039. DOI 10.1080/00207540210123634 | Zbl 1048.90509
[15] Wang, R. T., Ho, C. T. B., Oh, K.: Measuring production and marketing efficiency using grey relation analysis and data envelopment analysis. Int. J. Product. Res. 48 (2010), 183-199. DOI 10.1080/00207540802446803 | Zbl 1197.90270
[16] Wang, Y. M., Greatbanks, R., Yang, J. B.: Interval efficiency assessment using data envelopment analysis. Fuzzy Sets and Systems 153 (2005), 347-370. MR 2149373 | Zbl 1122.91339
Partner of
EuDML logo