Previous |  Up |  Next

Article

Title: On an exponential inequality and a strong law of large numbers for monotone measures (English)
Author: Agahi, Hamzeh
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 804-813
Summary lang: English
.
Category: math
.
Summary: An exponential inequality for Choquet expectation is discussed. We also obtain a strong law of large numbers based on Choquet expectation. The main results of this paper improve some previous results obtained by many researchers. (English)
Keyword: Choquet expectation
Keyword: monotone probability
Keyword: exponential inequality
Keyword: a strong law of large numbers
MSC: 28A12
MSC: 60E15
MSC: 60F15
idZBL: Zbl 06410705
idMR: MR3301862
DOI: 10.14736/kyb-2014-5-0804
.
Date available: 2015-01-13T09:39:36Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144108
.
Reference: [1] Choquet, G.: Theory of capacities..Ann. Inst. Fourier 5 (1954), 131-295. Zbl 0679.01011, MR 0080760, 10.5802/aif.53
Reference: [2] Denneberg, D.: Non-additive Measure and Integral..Kluwer Academic Publishers, Dordrecht 1994. Zbl 0968.28009, MR 1320048
Reference: [3] Dvoretzky, A.: On the strong stability of a sequence of events..Ann. Math. Statist. 20 (1949), 2, 296-299. Zbl 0033.38402, MR 0031675, 10.1214/aoms/1177730039
Reference: [4] Kim, T. S., Kim, H. C.: On the exponential inequality for negatively dependent sequence..Korean Math. Soc. Commun. 22 (2007), 2, 315-321. MR 2313454, 10.4134/CKMS.2007.22.2.315
Reference: [5] Lehmann, E.: Some concepts of dependence..Ann. Math. Statist. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260
Reference: [6] Li, J., Yasuda, M., Jiang, Q., Suzuki, H., Wang, Z., Klir, G. J.: Convergence of sequence of measurable functions on fuzzy measure spaces..Fuzzy Sets and Systems 87 (1997), 317-323. Zbl 0915.28014, MR 1449484
Reference: [7] Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities..Kybernetika 46 (2010), 1098-1107. Zbl 1210.28025, MR 2797430
Reference: [8] Nooghabi, H. J., Azarnoosh, H. A.: Exponential inequality for negatively associated random variables..Statist. Papers 50 (2009), 419-428. Zbl 1247.60039, MR 2476199, 10.1007/s00362-007-0081-4
Reference: [9] Oliveira, P. D.: An exponential inequality for associated variables..Statist. Probab. Lett. 73 (2005), 189-197. Zbl 1070.60019, MR 2159254, 10.1016/j.spl.2004.11.023
Reference: [10] Pap, E.: Null-additive Set Functions..Kluwer, Dordrecht 1995. Zbl 1265.28002, MR 1368630
Reference: [11] Petrov, V. V.: Sums of Independent Random Variables..Springer-Verlag, Berlin 1975. Zbl 1125.60024, MR 0388499
Reference: [12] Varošanec, S.: On h-convexity..J. Math. Anal. Appl. 326 (2007), 303-311. Zbl 1111.26015, MR 2277784, 10.1016/j.jmaa.2006.02.086
Reference: [13] Wang, X., Hu, S., Shen., A., Yang, W.: An exponential inequality for a NOD sequence and a strong law of large numbers..Appl. Math. Lett. 24 (2011), 219-223. MR 2735145, 10.1016/j.aml.2010.09.007
Reference: [14] Wang, Z., Klir, G. J.: Generalized Measure Theory..Springer, New York 2009. Zbl 1184.28002, MR 2453907
Reference: [15] Xing, G., Yang, S.: An exponential inequality for strictly stationary and negatively associated random variables..Commun. Statistics-Theory and Methods 39 (2010), 340-349. Zbl 1187.60022, MR 2654882, 10.1080/03610920902750053
Reference: [16] Xing, G. D., Yang, S. C., Liu, A. L., Wang, X. P.: A remark on the exponential inequality for negatively associated random variables..J. Korean Statist. Soc. 38 (2009), 53-57. Zbl 1293.60042, MR 2492379, 10.1016/j.jkss.2008.06.005
.

Files

Files Size Format View
Kybernetika_50-2014-5_12.pdf 302.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo