[3] Cheng, B. N., Rachev, S.: Multivariate stable securities in financial markets. Math. Finance 5 (1995), 133-153.
[4] DuMouchel, W. H.:
Stable Distributions in Statistical Inference. PhD. Thesis, University of Ann Arbor, Ann Arbor 1971.
MR 2620950 |
Zbl 0321.62017
[8] Kagan, A.:
Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments (in Russian). Problemy Peredachi Informatsii 12 (2009), 15-29.
MR 0413340
[9] Klebanov, L.: Heavy Tailed Distributions. Matfyzpress, Prague 2003.
[11] Kring, S., Rachev, S., Höchstötter, M., Fabozzi, F. J.:
Estimation of Alpha-Stable Sub-Gaussian Distributions for Asset Returns. In: Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Heidelberg 2008, pp. 111-152.
Zbl 1154.91601
[12] Madan, D. B., Seneta, E.:
The variance gamma model from shared market returns. J. Bus. 63 (1990), 511-524.
DOI 10.1086/296519
[13] Mandelbrot, B.:
The variation of certain speculative prices. J. Bus. 26 (1963), 394-419.
DOI 10.1086/294632
[16] Mittnik, S., Rachev, S.:
Tail estmation of the stable index alpha. Applied mathematics. Letters 9 (1996), 3, 53-56.
MR 1385999
[17] Mittnik, S., Paolella, M. S.: Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions.
[18] Nolan, J. P.: Modeling Financial Data with Stable Distributions. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105-130.
[19] Nolan, J. P.:
Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhauser, Boston 2001.
MR 1833706 |
Zbl 0971.62008
[20] Nolan, J. P., Panorska, A. K.:
Data analysis for heavy tailed multivariate samples. Commun. Statist.: Stochastic Models (1997), 687-702.
MR 1482289 |
Zbl 0899.60011
[21] Omelchenko, V.: Elliptical stable distributions. In: Mathematical Methods in Economics 2010 (M. Houda and J. Friebelova, eds.), pp. 483-488.
[22] Ortobelli, S., Huber, I., Rachev, S., Schwarz, E. S.: Portfolio Choice Theory with Non-Gaussian Distributed Return. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 547-594.
[24] Rachev, S. T., Schwarz, E. S., Khindanova, I.: Stable Modeling of Market and Credit Value at Risk. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 255-264.
[25] Samorodnitsky, G., Taqqu, M. S.:
Stable Non-Gaussian Random Processes. Chapman and Hall 1994.
MR 1280932 |
Zbl 0925.60027
[26] Schmidt, P.:
An improved version of Quandt-Ramsey MGF estimator for mixtures of normal distributions and switching regressions. Econometrica 50 (1982), 501-524.
DOI 10.2307/1912640 |
MR 0662290
[27] Slámová, L., Klebanov, L.: Modeling financial returns by discrete stable distributions. In: Proc. 30th International Conference Mathematical Methods in Economics 2012.
[29] Zolotarev, V.: On representation of stable laws by integrals selected translation. Math. Statist. Probab. 6 (1986), 84-88.