Previous |  Up |  Next

Article

Title: On block triangular matrices with signed Drazin inverse (English)
Author: Bu, Changjiang
Author: Wang, Wenzhe
Author: Zhou, Jiang
Author: Sun, Lizhu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 883-892
Summary lang: English
.
Category: math
.
Summary: The sign pattern of a real matrix $A$, denoted by $\mathop {\rm sgn} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal {Q}(A)$ denote the set of all real matrices $B$ such that $\mathop {\rm sgn} B=\mathop {\rm sgn} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^{k+1}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop {\rm sgn} \widetilde {A}^{\rm d}=\mathop {\rm sgn} A^{\rm d}$ for any $\widetilde {A}\in \mathcal {Q}(A)$, where $A^{\rm d}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse. (English)
Keyword: sign pattern matrix
Keyword: signed Drazin inverse
Keyword: strong sign nonsingular matrix
MSC: 15A09
MSC: 15B35
idZBL: Zbl 06433702
idMR: MR3304786
DOI: 10.1007/s10587-014-0141-6
.
Date available: 2015-02-09T17:22:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144149
.
Reference: [1] Brualdi, R. A., Chavey, K. L., Shader, B. L.: Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices.J. Comb. Theory, Ser. B 62 (1994), 133-150. Zbl 0807.05053, MR 1290635, 10.1006/jctb.1994.1059
Reference: [2] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611
Reference: [3] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems.Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). Zbl 0833.15002, MR 1358133
Reference: [4] S. L. Campbell, C. D. Meyer, Jr.: Generalized Inverses of Linear Transformations.Surveys and Reference Works in Mathematics 4 Pitman Publishing, London (1979). Zbl 0417.15002, MR 0533666
Reference: [5] Catral, M., Olesky, D. D., Driessche, P. van den: Graphical description of group inverses of certain bipartite matrices.Linear Algebra Appl. 432 (2010), 36-52. MR 2566457
Reference: [6] Eschenbach, C. A., Li, Z.: Potentially nilpotent sign pattern matrices.Linear Algebra Appl. 299 (1999), 81-99. Zbl 0941.15012, MR 1723710
Reference: [7] Shader, B. L.: Least squares sign-solvability.SIAM J. Matrix Anal. Appl. 16 (1995), 1056-1073. Zbl 0837.05032, MR 1351455, 10.1137/S0895479894272372
Reference: [8] Shao, J.-Y., He, J.-L., Shan, H.-Y.: Matrices with special patterns of signed generalized inverses.SIAM J. Matrix Anal. Appl. 24 (2003), 990-1002. MR 2003317, 10.1137/S0895479802401485
Reference: [9] Shao, J.-Y., Hu, Z.-X.: Characterizations of some classes of strong sign nonsingular digraphs.Discrete Appl. Math. 105 (2000), 159-172. Zbl 0965.05050, MR 1780469, 10.1016/S0166-218X(00)00182-7
Reference: [10] Shao, J.-Y., Shan, H.-Y.: Matrices with signed generalized inverses.Linear Algebra Appl. 322 (2001), 105-127. Zbl 0967.15002, MR 1804116, 10.1016/S0024-3795(00)00233-0
Reference: [11] Thomassen, C.: When the sign pattern of a square matrix determines uniquely the sign pattern of its inverse.Linear Algebra Appl. 119 (1989), 27-34. Zbl 0673.05067, MR 1005232, 10.1016/0024-3795(89)90066-9
Reference: [12] Zhou, J., Bu, C., Wei, Y.: Group inverse for block matrices and some related sign analysis.Linear and Multilinear Algebra 60 (2012), 669-681. Zbl 1246.15009, MR 2929177, 10.1080/03081087.2011.625498
Reference: [13] Zhou, J., Bu, C., Wei, Y.: Some block matrices with signed Drazin inverses.Linear Algebra Appl. 437 (2012), 1779-1792. Zbl 1259.15008, MR 2946359
.

Files

Files Size Format View
CzechMathJ_64-2014-4_2.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo