Title:
|
On block triangular matrices with signed Drazin inverse (English) |
Author:
|
Bu, Changjiang |
Author:
|
Wang, Wenzhe |
Author:
|
Zhou, Jiang |
Author:
|
Sun, Lizhu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
883-892 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The sign pattern of a real matrix $A$, denoted by $\mathop {\rm sgn} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal {Q}(A)$ denote the set of all real matrices $B$ such that $\mathop {\rm sgn} B=\mathop {\rm sgn} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^{k+1}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop {\rm sgn} \widetilde {A}^{\rm d}=\mathop {\rm sgn} A^{\rm d}$ for any $\widetilde {A}\in \mathcal {Q}(A)$, where $A^{\rm d}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse. (English) |
Keyword:
|
sign pattern matrix |
Keyword:
|
signed Drazin inverse |
Keyword:
|
strong sign nonsingular matrix |
MSC:
|
15A09 |
MSC:
|
15B35 |
idZBL:
|
Zbl 06433702 |
idMR:
|
MR3304786 |
DOI:
|
10.1007/s10587-014-0141-6 |
. |
Date available:
|
2015-02-09T17:22:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144149 |
. |
Reference:
|
[1] Brualdi, R. A., Chavey, K. L., Shader, B. L.: Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices.J. Comb. Theory, Ser. B 62 (1994), 133-150. Zbl 0807.05053, MR 1290635, 10.1006/jctb.1994.1059 |
Reference:
|
[2] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611 |
Reference:
|
[3] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems.Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). Zbl 0833.15002, MR 1358133 |
Reference:
|
[4] S. L. Campbell, C. D. Meyer, Jr.: Generalized Inverses of Linear Transformations.Surveys and Reference Works in Mathematics 4 Pitman Publishing, London (1979). Zbl 0417.15002, MR 0533666 |
Reference:
|
[5] Catral, M., Olesky, D. D., Driessche, P. van den: Graphical description of group inverses of certain bipartite matrices.Linear Algebra Appl. 432 (2010), 36-52. MR 2566457 |
Reference:
|
[6] Eschenbach, C. A., Li, Z.: Potentially nilpotent sign pattern matrices.Linear Algebra Appl. 299 (1999), 81-99. Zbl 0941.15012, MR 1723710 |
Reference:
|
[7] Shader, B. L.: Least squares sign-solvability.SIAM J. Matrix Anal. Appl. 16 (1995), 1056-1073. Zbl 0837.05032, MR 1351455, 10.1137/S0895479894272372 |
Reference:
|
[8] Shao, J.-Y., He, J.-L., Shan, H.-Y.: Matrices with special patterns of signed generalized inverses.SIAM J. Matrix Anal. Appl. 24 (2003), 990-1002. MR 2003317, 10.1137/S0895479802401485 |
Reference:
|
[9] Shao, J.-Y., Hu, Z.-X.: Characterizations of some classes of strong sign nonsingular digraphs.Discrete Appl. Math. 105 (2000), 159-172. Zbl 0965.05050, MR 1780469, 10.1016/S0166-218X(00)00182-7 |
Reference:
|
[10] Shao, J.-Y., Shan, H.-Y.: Matrices with signed generalized inverses.Linear Algebra Appl. 322 (2001), 105-127. Zbl 0967.15002, MR 1804116, 10.1016/S0024-3795(00)00233-0 |
Reference:
|
[11] Thomassen, C.: When the sign pattern of a square matrix determines uniquely the sign pattern of its inverse.Linear Algebra Appl. 119 (1989), 27-34. Zbl 0673.05067, MR 1005232, 10.1016/0024-3795(89)90066-9 |
Reference:
|
[12] Zhou, J., Bu, C., Wei, Y.: Group inverse for block matrices and some related sign analysis.Linear and Multilinear Algebra 60 (2012), 669-681. Zbl 1246.15009, MR 2929177, 10.1080/03081087.2011.625498 |
Reference:
|
[13] Zhou, J., Bu, C., Wei, Y.: Some block matrices with signed Drazin inverses.Linear Algebra Appl. 437 (2012), 1779-1792. Zbl 1259.15008, MR 2946359 |
. |