Title:
|
Quasitriangular Hopf group algebras and braided monoidal categories (English) |
Author:
|
Zhao, Shiyin |
Author:
|
Wang, Jing |
Author:
|
Chen, Hui-Xiang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
893-909 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them. (English) |
Keyword:
|
Hopf $\pi $-algebra |
Keyword:
|
$H$-$\pi $-modules |
Keyword:
|
braided monoidal category |
Keyword:
|
braided monoidal functor |
MSC:
|
08C05 |
MSC:
|
16T05 |
MSC:
|
16T25 |
MSC:
|
18D10 |
idZBL:
|
Zbl 06433703 |
idMR:
|
MR3304787 |
DOI:
|
10.1007/s10587-014-0142-5 |
. |
Date available:
|
2015-02-09T17:23:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144150 |
. |
Reference:
|
[1] Chen, H.: Cocycle deformations, braided monoidal categories and quasitriangularity.Chin. Sci. Bull. 44 (1999), 510-513. Zbl 1008.16037, MR 1708131, 10.1007/BF02885536 |
Reference:
|
[2] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras.Proc. Am. Math. Soc. 142 (2014), 765-775. MR 3148512, 10.1090/S0002-9939-2013-11823-X |
Reference:
|
[3] Cibils, C.: A quiver quantum group.Commun. Math. Phys. 157 (1993), 459-477. Zbl 0806.16039, MR 1243707, 10.1007/BF02096879 |
Reference:
|
[4] Drinfel'd, V. G.: Quantum Groups.Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). Zbl 0667.16003, MR 0934283 |
Reference:
|
[5] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155 Springer, New York (1995). Zbl 0808.17003, MR 1321145 |
Reference:
|
[6] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). Zbl 0793.16029, MR 1243637 |
Reference:
|
[7] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series W. A. Benjamin, New York (1969). Zbl 0203.31601, MR 0252485 |
Reference:
|
[8] Turaev, V.: Crossed group-categories.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. Zbl 1185.18009, MR 2500054 |
Reference:
|
[9] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories.ArXiv: math/0005291v1 [math.GT] (2000). |
Reference:
|
[10] Virelizier, A.: Hopf group-coalgebras.J. Pure Appl. Algebra 171 (2002), 75-122. Zbl 1011.16023, MR 1903398, 10.1016/S0022-4049(01)00125-6 |
Reference:
|
[11] Wang, S.-H.: Coquasitriangular Hopf group algebras and Drinfel'd co-doubles.Commun. Algebra 35 (2007), 77-101. Zbl 1139.16029, MR 2287553, 10.1080/00927870601041334 |
Reference:
|
[12] Yetter, D. N.: Quantum groups and representations of monoidal categories.Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. Zbl 0712.17014, MR 1074714, 10.1017/S0305004100069139 |
Reference:
|
[13] Zhu, M., Chen, H., Li, L.: Coquasitriangular Hopf group coalgebras and braided monoidal categories.Front. Math. China 6 (2011), 1009-1020. Zbl 1229.16024, MR 2836864, 10.1007/s11464-011-0152-7 |
Reference:
|
[14] Zhu, M., Chen, H., Li, L.: Quasitriangular Hopf group coalgebras and braided monoidal categories.Arab. J. Sci. Eng. 36 (2011), 1063-1070. MR 2845533, 10.1007/s13369-011-0086-0 |
. |