Previous |  Up |  Next

Article

Title: Quasitriangular Hopf group algebras and braided monoidal categories (English)
Author: Zhao, Shiyin
Author: Wang, Jing
Author: Chen, Hui-Xiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 893-909
Summary lang: English
.
Category: math
.
Summary: Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them. (English)
Keyword: Hopf $\pi $-algebra
Keyword: $H$-$\pi $-modules
Keyword: braided monoidal category
Keyword: braided monoidal functor
MSC: 08C05
MSC: 16T05
MSC: 16T25
MSC: 18D10
idZBL: Zbl 06433703
idMR: MR3304787
DOI: 10.1007/s10587-014-0142-5
.
Date available: 2015-02-09T17:23:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144150
.
Reference: [1] Chen, H.: Cocycle deformations, braided monoidal categories and quasitriangularity.Chin. Sci. Bull. 44 (1999), 510-513. Zbl 1008.16037, MR 1708131, 10.1007/BF02885536
Reference: [2] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras.Proc. Am. Math. Soc. 142 (2014), 765-775. MR 3148512, 10.1090/S0002-9939-2013-11823-X
Reference: [3] Cibils, C.: A quiver quantum group.Commun. Math. Phys. 157 (1993), 459-477. Zbl 0806.16039, MR 1243707, 10.1007/BF02096879
Reference: [4] Drinfel'd, V. G.: Quantum Groups.Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). Zbl 0667.16003, MR 0934283
Reference: [5] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155 Springer, New York (1995). Zbl 0808.17003, MR 1321145
Reference: [6] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). Zbl 0793.16029, MR 1243637
Reference: [7] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series W. A. Benjamin, New York (1969). Zbl 0203.31601, MR 0252485
Reference: [8] Turaev, V.: Crossed group-categories.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. Zbl 1185.18009, MR 2500054
Reference: [9] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories.ArXiv: math/0005291v1 [math.GT] (2000).
Reference: [10] Virelizier, A.: Hopf group-coalgebras.J. Pure Appl. Algebra 171 (2002), 75-122. Zbl 1011.16023, MR 1903398, 10.1016/S0022-4049(01)00125-6
Reference: [11] Wang, S.-H.: Coquasitriangular Hopf group algebras and Drinfel'd co-doubles.Commun. Algebra 35 (2007), 77-101. Zbl 1139.16029, MR 2287553, 10.1080/00927870601041334
Reference: [12] Yetter, D. N.: Quantum groups and representations of monoidal categories.Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. Zbl 0712.17014, MR 1074714, 10.1017/S0305004100069139
Reference: [13] Zhu, M., Chen, H., Li, L.: Coquasitriangular Hopf group coalgebras and braided monoidal categories.Front. Math. China 6 (2011), 1009-1020. Zbl 1229.16024, MR 2836864, 10.1007/s11464-011-0152-7
Reference: [14] Zhu, M., Chen, H., Li, L.: Quasitriangular Hopf group coalgebras and braided monoidal categories.Arab. J. Sci. Eng. 36 (2011), 1063-1070. MR 2845533, 10.1007/s13369-011-0086-0
.

Files

Files Size Format View
CzechMathJ_64-2014-4_3.pdf 300.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo