Title:
|
Pretty cleanness and filter-regular sequences (English) |
Author:
|
Bandari, Somayeh |
Author:
|
Divaani-Aazar, Kamran |
Author:
|
Jahan, Ali Soleyman |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
933-944 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley's conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean. (English) |
Keyword:
|
almost clean module |
Keyword:
|
clean module |
Keyword:
|
$d$-sequence |
Keyword:
|
filter-regular sequence |
Keyword:
|
pretty clean module |
MSC:
|
05E40 |
MSC:
|
13F20 |
idZBL:
|
Zbl 06433705 |
idMR:
|
MR3304789 |
DOI:
|
10.1007/s10587-014-0144-3 |
. |
Date available:
|
2015-02-09T17:27:32Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144152 |
. |
Reference:
|
[1] Apel, J.: On a conjecture of R. P. Stanley. I. Monomial ideals.J. Algebr. Comb. 17 (2003), 39-56. Zbl 1031.13003, MR 1958008, 10.1023/A:1021912724441 |
Reference:
|
[2] Apel, J.: On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals.J. Algebr. Comb. 17 (2003), 57-74. Zbl 1031.13004, MR 1958009, 10.1023/A:1021916908512 |
Reference:
|
[3] Lorestani, K. Borna, Sahandi, P., Sharif, T.: A note on the associated primes of local cohomology modules.Commun. Algebra 34 (2006), 3409-3412. MR 2252680, 10.1080/00927870600794115 |
Reference:
|
[4] Dress, A.: A new algebraic criterion for shellability.Beitr. Algebra Geom. 34 (1993), 45-55. Zbl 0780.52012, MR 1239277 |
Reference:
|
[5] Herzog, J., Jahan, A. S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes.J. Algebr. Comb. 27 (2008), 113-125. Zbl 1131.13020, MR 2366164, 10.1007/s10801-007-0076-1 |
Reference:
|
[6] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260 Springer, London (2011). Zbl 1206.13001, MR 2724673 |
Reference:
|
[7] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes.Manuscr. Math. 121 (2006), 385-410. Zbl 1107.13017, MR 2267659, 10.1007/s00229-006-0044-4 |
Reference:
|
[8] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras.Manuscr. Math. 104 (2001), 479-501. Zbl 1058.13011, MR 1836109, 10.1007/s002290170022 |
Reference:
|
[9] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal.J. Algebra 322 (2009), 3151-3169. Zbl 1186.13019, MR 2567414, 10.1016/j.jalgebra.2008.01.006 |
Reference:
|
[10] Popescu, D.: Stanley depth of multigraded modules.J. Algebra 321 (2009), 2782-2797. Zbl 1179.13016, MR 2512626, 10.1016/j.jalgebra.2009.03.009 |
Reference:
|
[11] Rauf, A.: Stanley decompositions, pretty clean filtrations and reductions modulo regular elements.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 347-354. Zbl 1155.13311, MR 2370321 |
Reference:
|
[12] Sabzrou, H., Tousi, M., Yassemi, S.: Simplicial join via tensor product.Manuscr. Math. 126 (2008), 255-272. Zbl 1165.13003, MR 2403189, 10.1007/s00229-008-0175-x |
Reference:
|
[13] Jahan, A. Soleyman: Easy proofs of some well known facts via cleanness.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 237-243. MR 2856300 |
Reference:
|
[14] Jahan, A. Soleyman: Prime filtrations and primary decompositions of modules.Commun. Algebra 39 (2011), 116-124. MR 2770881, 10.1080/00927870903431225 |
Reference:
|
[15] Jahan, A. Soleyman: Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality.Manuscr. Math. 130 (2009), 533-550. MR 2563149, 10.1007/s00229-009-0308-x |
Reference:
|
[16] Jahan, A. Soleyman: Prime filtrations of monomial ideals and polarizations.J. Algebra 312 (2007), 1011-1032. MR 2333198, 10.1016/j.jalgebra.2006.11.002 |
Reference:
|
[17] Jahan, A. Soleyman, Zheng, X.: Monomial ideals of forest type.Commun. Algebra 40 (2012), 2786-2797. Zbl 1254.13025, MR 2968912, 10.1080/00927872.2011.585679 |
Reference:
|
[18] Stanley, R. P.: Linear Diophantine equations and local cohomology.Invent. Math. 68 (1982), 175-193. Zbl 0516.10009, MR 0666158, 10.1007/BF01394054 |
Reference:
|
[19] Tang, Z.: On certain monomial sequences.J. Algebra 282 (2004), 831-842. Zbl 1147.13304, MR 2101086, 10.1016/j.jalgebra.2004.08.027 |
. |