Previous |  Up |  Next

Article

Title: Pretty cleanness and filter-regular sequences (English)
Author: Bandari, Somayeh
Author: Divaani-Aazar, Kamran
Author: Jahan, Ali Soleyman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 933-944
Summary lang: English
.
Category: math
.
Summary: Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley's conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean. (English)
Keyword: almost clean module
Keyword: clean module
Keyword: $d$-sequence
Keyword: filter-regular sequence
Keyword: pretty clean module
MSC: 05E40
MSC: 13F20
idZBL: Zbl 06433705
idMR: MR3304789
DOI: 10.1007/s10587-014-0144-3
.
Date available: 2015-02-09T17:27:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144152
.
Reference: [1] Apel, J.: On a conjecture of R. P. Stanley. I. Monomial ideals.J. Algebr. Comb. 17 (2003), 39-56. Zbl 1031.13003, MR 1958008, 10.1023/A:1021912724441
Reference: [2] Apel, J.: On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals.J. Algebr. Comb. 17 (2003), 57-74. Zbl 1031.13004, MR 1958009, 10.1023/A:1021916908512
Reference: [3] Lorestani, K. Borna, Sahandi, P., Sharif, T.: A note on the associated primes of local cohomology modules.Commun. Algebra 34 (2006), 3409-3412. MR 2252680, 10.1080/00927870600794115
Reference: [4] Dress, A.: A new algebraic criterion for shellability.Beitr. Algebra Geom. 34 (1993), 45-55. Zbl 0780.52012, MR 1239277
Reference: [5] Herzog, J., Jahan, A. S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes.J. Algebr. Comb. 27 (2008), 113-125. Zbl 1131.13020, MR 2366164, 10.1007/s10801-007-0076-1
Reference: [6] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260 Springer, London (2011). Zbl 1206.13001, MR 2724673
Reference: [7] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes.Manuscr. Math. 121 (2006), 385-410. Zbl 1107.13017, MR 2267659, 10.1007/s00229-006-0044-4
Reference: [8] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras.Manuscr. Math. 104 (2001), 479-501. Zbl 1058.13011, MR 1836109, 10.1007/s002290170022
Reference: [9] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal.J. Algebra 322 (2009), 3151-3169. Zbl 1186.13019, MR 2567414, 10.1016/j.jalgebra.2008.01.006
Reference: [10] Popescu, D.: Stanley depth of multigraded modules.J. Algebra 321 (2009), 2782-2797. Zbl 1179.13016, MR 2512626, 10.1016/j.jalgebra.2009.03.009
Reference: [11] Rauf, A.: Stanley decompositions, pretty clean filtrations and reductions modulo regular elements.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 347-354. Zbl 1155.13311, MR 2370321
Reference: [12] Sabzrou, H., Tousi, M., Yassemi, S.: Simplicial join via tensor product.Manuscr. Math. 126 (2008), 255-272. Zbl 1165.13003, MR 2403189, 10.1007/s00229-008-0175-x
Reference: [13] Jahan, A. Soleyman: Easy proofs of some well known facts via cleanness.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 237-243. MR 2856300
Reference: [14] Jahan, A. Soleyman: Prime filtrations and primary decompositions of modules.Commun. Algebra 39 (2011), 116-124. MR 2770881, 10.1080/00927870903431225
Reference: [15] Jahan, A. Soleyman: Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality.Manuscr. Math. 130 (2009), 533-550. MR 2563149, 10.1007/s00229-009-0308-x
Reference: [16] Jahan, A. Soleyman: Prime filtrations of monomial ideals and polarizations.J. Algebra 312 (2007), 1011-1032. MR 2333198, 10.1016/j.jalgebra.2006.11.002
Reference: [17] Jahan, A. Soleyman, Zheng, X.: Monomial ideals of forest type.Commun. Algebra 40 (2012), 2786-2797. Zbl 1254.13025, MR 2968912, 10.1080/00927872.2011.585679
Reference: [18] Stanley, R. P.: Linear Diophantine equations and local cohomology.Invent. Math. 68 (1982), 175-193. Zbl 0516.10009, MR 0666158, 10.1007/BF01394054
Reference: [19] Tang, Z.: On certain monomial sequences.J. Algebra 282 (2004), 831-842. Zbl 1147.13304, MR 2101086, 10.1016/j.jalgebra.2004.08.027
.

Files

Files Size Format View
CzechMathJ_64-2014-4_5.pdf 280.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo