Previous |  Up |  Next

Article

Title: Equidistribution in the dual group of the $S$-adic integers (English)
Author: Urban, Roman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 911-931
Summary lang: English
.
Category: math
.
Summary: Let $X$ be the quotient group of the $S$-adele ring of an algebraic number field by the discrete group of $S$-integers. Given a probability measure $\mu $ on $X^d$ and an endomorphism $T$ of $X^d$, we consider the relation between uniform distribution of the sequence $T^n\bold {x}$ for $\mu $-almost all $\bold {x}\in X^d$ and the behavior of $\mu $ relative to the translations by some rational subgroups of $X^d$. The main result of this note is an extension of the corresponding result for the $d$-dimensional torus $\mathbb T^d$ due to B. Host. (English)
Keyword: uniform distribution modulo $1$
Keyword: equidistribution in probability
Keyword: algebraic number fields
Keyword: $S$-adele ring
Keyword: $S$-integer dynamical system
Keyword: algebraic dynamics
Keyword: topological dynamics
Keyword: $a$-adic solenoid
MSC: 11J71
MSC: 11K06
MSC: 54H20
idZBL: Zbl 06433704
idMR: MR3304788
DOI: 10.1007/s10587-014-0143-4
.
Date available: 2015-02-09T17:25:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144151
.
Reference: [1] Berend, D.: Multi-invariant sets on compact abelian groups.Trans. Am. Math. Soc. 286 (1984), 505-535. Zbl 0523.22004, MR 0760973, 10.1090/S0002-9947-1984-0760973-X
Reference: [2] Bertin, M.-J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.-P.: Pisot and Salem Numbers.With a preface by David W. Boyd Birkhäuser Basel (1992). Zbl 0772.11041, MR 1187044
Reference: [3] Chothi, V., Everest, G., Ward, T.: {$S$}-integer dynamical systems: periodic points.J. Reine Angew. Math. 489 (1997), 99-132. Zbl 0879.58037, MR 1461206
Reference: [4] Drmota, M., Tichy, R. F.: Sequences, Discrepancies and Applications.Lecture Notes in Mathematics 1651 Springer, Berlin (1997). Zbl 0877.11043, MR 1470456, 10.1007/BFb0093405
Reference: [5] Gouvêa, F. Q.: $p$-adic Numbers: An Introduction.Universitext Springer, Berlin (1997). Zbl 0874.11002, MR 1488696
Reference: [6] Halmos, P. R.: On automorphisms of compact groups.Bull. Am. Math. Soc. 49 (1943), 619-624. Zbl 0061.04403, MR 0008647, 10.1090/S0002-9904-1943-07995-5
Reference: [7] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of topological groups, integration theory, group representations.Fundamental Principles of Mathematical Sciences 115 Springer, Berlin (1979). MR 0551496
Reference: [8] Host, B.: Some results of uniform distribution in the multidimensional torus.Ergodic Theory Dyn. Syst. 20 (2000), 439-452. Zbl 1047.37003, MR 1756978
Reference: [9] Host, B.: Normal numbers, entropy, translations.Isr. J. Math. 91 French (1995), 419-428. Zbl 0839.11030, MR 1348326, 10.1007/BF02761660
Reference: [10] Koblitz, N.: $p$-adic Numbers, $p$-adic Analysis, and Zeta-Functions.Graduate Texts in Mathematics 58 Springer, New York (1977). Zbl 0364.12015, MR 0754003, 10.1007/978-1-4684-0047-2
Reference: [11] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics.John Wiley & Sons New York (1974). MR 0419394
Reference: [12] Mahler, K.: $p$-adic Numbers and Their Functions.Cambridge Tracts in Mathematics 76 Cambridge University Press, Cambridge (1981). Zbl 0444.12013, MR 0644483
Reference: [13] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers.Springer Monographs in Mathematics Springer, Berlin (2004). Zbl 1159.11039, MR 2078267
Reference: [14] Neukirch, J.: Algebraic Number Theory.Fundamental Principles of Mathematical Sciences 322 Springer, Berlin (1999). Zbl 0956.11021, MR 1697859
Reference: [15] Ramakrishnan, D., Valenza, R. J.: Fourier Analysis on Number Fields.Graduate Texts in Mathematics 186 Springer, New York (1999). Zbl 0916.11058, MR 1680912, 10.1007/978-1-4757-3085-2
Reference: [16] Robert, A. M.: A Course in $p$-adic Analysis.Graduate Texts in Mathematics 198 Springer, New York (2000). Zbl 0947.11035, MR 1760253, 10.1007/978-1-4757-3254-2
Reference: [17] Schmidt, K.: Dynamical Systems of Algebraic Origin.Progress in Mathematics 128 Birkhäuser, Basel (1995). Zbl 0833.28001, MR 1345152
Reference: [18] Urban, R.: Equidistribution in the {$d$}-dimensional {$a$}-adic solenoids.Unif. Distrib. Theory 6 (2011), 21-31. MR 2817758
Reference: [19] Weil, A.: Basic Number Theory.Die Grundlehren der Mathematischen Wissenschaften 144 Springer, New York (1974). Zbl 0326.12001, MR 0427267
.

Files

Files Size Format View
CzechMathJ_64-2014-4_4.pdf 350.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo