Previous |  Up |  Next

Article

Title: Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents (English)
Author: Lu, Yan
Author: Zhu, Yue Ping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 969-987
Summary lang: English
.
Category: math
.
Summary: We introduce a new type of variable exponent function spaces $M\dot K^{\alpha (\cdot ),\lambda }_{q,p(\cdot )}(\mathbb R^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms. (English)
Keyword: Morrey-Herz space
Keyword: variable exponent
Keyword: sublinear operator
Keyword: commutator
MSC: 42B25
MSC: 42B35
idZBL: Zbl 06433708
idMR: MR3304792
DOI: 10.1007/s10587-014-0147-0
.
Date available: 2015-02-09T17:32:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144155
.
Reference: [1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents.J. Math. Anal. Appl. 394 (2012), 781-795. Zbl 1250.42077, MR 2927498, 10.1016/j.jmaa.2012.04.043
Reference: [2] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces.Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. Zbl 1207.42011, MR 2493649
Reference: [3] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. Zbl 1100.42012, MR 2210118
Reference: [4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842
Reference: [5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [6] Herz, C.: Lipschitz spaces and Berstein's theorem on absolutely convergent Fourier transforms.J. Math. Mech. 18 (1968), 283-323. MR 0438109
Reference: [7] Ho, K.-P.: The fractional integral operators on Morrey spaces with variable exponent on unbounded domains.Math. Inequal. Appl. 16 (2013), 363-373. Zbl 1260.42009, MR 3059976
Reference: [8] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent.Rend. Ciec. Mat. Palermo (2) 59 (2010), 199-213. Zbl 1202.42029, MR 2670690, 10.1007/s12215-010-0015-1
Reference: [9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization.Anal. Math. 36 (2010), 33-50. Zbl 1224.42025, MR 2606575, 10.1007/s10476-010-0102-8
Reference: [10] Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent.Hiroshima Math. J. 40 (2010), 343-355. Zbl 1217.42034, MR 2766665, 10.32917/hmj/1291818849
Reference: [11] Izuki, M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent.Math. Sci. Res. J. 13 (2009), 243-253. Zbl 1193.42078, MR 2582455
Reference: [12] Izuki, M., Sawano, Y.: Variable Lebesgue norm estimates for BMO functions.Czech. Math. J. 62 (2012), 717-727. Zbl 1265.42087, MR 2984631, 10.1007/s10587-012-0042-5
Reference: [13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [14] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces.Trans. Am. Math. Soc. 362 (2010), 4229-4242. MR 2608404, 10.1090/S0002-9947-10-05066-X
Reference: [15] Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces.Hokkaido Math. J. 34 (2005), 299-314. Zbl 1081.42012, MR 2158999, 10.14492/hokmj/1285766224
Reference: [16] Lu, S. Z., Yang, D. C., Hu, G.: Herz Type Spaces and Their Applications.Science Press, Beijing (2008).
.

Files

Files Size Format View
CzechMathJ_64-2014-4_8.pdf 300.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo