Title:
|
Unital extensions of $AF$-algebras by purely infinite simple algebras (English) |
Author:
|
Liu, Junping |
Author:
|
Wei, Changguo |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
989-1001 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism. (English) |
Keyword:
|
$AF$-algebra |
Keyword:
|
extension |
Keyword:
|
purely infinite simple algebra |
MSC:
|
46L05 |
MSC:
|
46L35 |
idZBL:
|
Zbl 06433709 |
idMR:
|
MR3304793 |
DOI:
|
10.1007/s10587-014-0148-z |
. |
Date available:
|
2015-02-09T17:34:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144156 |
. |
Reference:
|
[1] Blackadar, B.: $K$-Theory for Operator Algebras. (2nd ed.).Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). Zbl 0913.46054, MR 1656031 |
Reference:
|
[2] Eilers, S., Restorff, G., Ruiz, E.: The ordered $K$-theory of a full extension.Can. J. Math. 66 596-625 (2014). MR 3194162, 10.4153/CJM-2013-015-7 |
Reference:
|
[3] Eilers, S., Restorff, G., Ruiz, E.: Classification of extensions of classifiable $C^*$-algebras.Adv. Math. 222 (2009), 2153-2172. Zbl 1207.46055, MR 2562779, 10.1016/j.aim.2009.07.014 |
Reference:
|
[4] Elliott, G. A., Gong, G.: On the classification of $C^*$-algebras of real rank zero. II.Ann. Math. (2) 144 (1996), 497-610. MR 1426886 |
Reference:
|
[5] Elliott, G. A., Gong, G., Li, L.: On the classification of simple inductive limit $C^*$-algebras. II: The isomorphism theorem.Invent. Math. 168 (2007), 249-320. Zbl 1129.46051, MR 2289866, 10.1007/s00222-006-0033-y |
Reference:
|
[6] Elliott, G., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem.Pac. J. Math. 198 (2001), 385-409. Zbl 1058.46041, MR 1835515, 10.2140/pjm.2001.198.385 |
Reference:
|
[7] Gong, G.: On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem.Doc. Math., J. DMV (electronic) 7 (2002), 255-461. Zbl 1024.46018, MR 2014489 |
Reference:
|
[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence.Houston J. Math. (electronic) 32 (2006), 531-550. Zbl 1111.46050, MR 2219330 |
Reference:
|
[9] Lin, H.: Approximately diagonalizing matrices over $C(Y)$.Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. Zbl 1262.46039, MR 2903374, 10.1073/pnas.1101079108 |
Reference:
|
[10] Lin, H.: Asymptotic unitary equivalence and classification of simple amenable $C^*$-algebras.Invent. Math. 183 (2011), 385-450. MR 2772085, 10.1007/s00222-010-0280-9 |
Reference:
|
[11] Lin, H.: Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra.Mem. Am. Math. Soc. 205 (2010), 131 pages. MR 2643313 |
Reference:
|
[12] Lin, H.: Full extensions and approximate unitary equivalence.Pac. J. Math. 229 (2007), 389-428. Zbl 1152.46049, MR 2276517, 10.2140/pjm.2007.229.389 |
Reference:
|
[13] Lin, H.: Classification of simple $C^*$-algebras of tracial topological rank zero.Duke Math. J. 125 (2004), 91-119. Zbl 1068.46032, MR 2097358, 10.1215/S0012-7094-04-12514-X |
Reference:
|
[14] Lin, H.: Classification of simple $C^*$-algebras and higher dimensional noncommutative tori.Ann. Math. (2) 157 (2003), 521-544. MR 1973053 |
Reference:
|
[15] Maclane, S.: Homology.Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. Zbl 0133.26502, MR 0156879 |
Reference:
|
[16] Phillips, N. C.: A classification theorem for nuclear purely infinite simple $C^*$-algebras.Doc. Math., J. DMV (electronic) 5 (2000), 49-114. Zbl 0943.46037, MR 1745197 |
Reference:
|
[17] Rørdam, M.: Classification of extensions of certain $C^*$-algebras by their six term exact sequences in $K$-theory.Math. Ann. 308 (1997), 93-117. MR 1446202, 10.1007/s002080050067 |
Reference:
|
[18] Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to $K$-Theory for $C^*$-Algebras.London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). Zbl 0967.19001, MR 1783408 |
Reference:
|
[19] Rørdam, M., Størmer, E.: Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras.Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). Zbl 0985.00012, MR 1878881 |
Reference:
|
[20] Wei, C.: Classification of extensions of torus algebra. II.Sci. China, Math. 55 (2012), 179-186. Zbl 1253.46066, MR 2873811, 10.1007/s11425-011-4225-6 |
Reference:
|
[21] Wei, C.: Classification of extensions of $A\mathbb T$-algebras.Int. J. Math. 22 (2011), 1187-1208. MR 2826560, 10.1142/S0129167X11007227 |
Reference:
|
[22] Wei, C.: Universal coefficient theorems for the stable Ext-groups.J. Funct. Anal. 258 (2010), 650-664. Zbl 1194.46103, MR 2557950, 10.1016/j.jfa.2009.10.009 |
Reference:
|
[23] Wei, C.: Classification of unital extensions and the BDF-theory.Submitted to Houst. J. Math. |
Reference:
|
[24] Wei, C., Wang, L.: Isomorphism of extensions of $C(\mathbb T^2)$.Sci. China, Math. 54 (2011), 281-286. Zbl 1225.46051, MR 2771204 |
. |