Previous |  Up |  Next

Article

Title: On the ranks of elliptic curves in families of quadratic twists over number fields (English)
Author: Lee, Jung-Jo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 1003-1018
Summary lang: English
.
Category: math
.
Summary: A conjecture due to Honda predicts that given any abelian variety over a number field $K$, all of its quadratic twists (or twists of a fixed order in general) have bounded Mordell-Weil rank. About 15 years ago, Rubin and Silverberg obtained an analytic criterion for Honda's conjecture for a family of quadratic twists of an elliptic curve defined over the field of rational numbers. In this paper, we consider this problem over number fields. We will prove that the existence of a uniform upper bound for the ranks of elliptic curves in this family is equivalent to the convergence of a certain infinite series. This result extends the work of Rubin and Silverberg over $\mathbb Q$. (English)
Keyword: elliptic curve
Keyword: rank
Keyword: quadratic twist
MSC: 11G05
idZBL: Zbl 06433710
idMR: MR3304794
DOI: 10.1007/s10587-014-0149-y
.
Date available: 2015-02-09T17:36:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144157
.
Reference: [1] Baker, M. H.: Lower bounds for the canonical height on elliptic curves over abelian extensions.Int. Math. Res. Not. 2003 (2003), 1571-1589. Zbl 1114.11058, MR 1979685, 10.1155/S1073792803212083
Reference: [2] Brumer, A., Kramer, K.: The rank of elliptic curves.Duke Math. J. 44 (1977), 715-743. Zbl 0376.14011, MR 0457453, 10.1215/S0012-7094-77-04431-3
Reference: [3] Gupta, R., Murty, M. R.: Primitive points on elliptic curves.Compos. Math. 58 (1986), 13-44. Zbl 0598.14018, MR 0834046
Reference: [4] Honda, T.: Isogenies, rational points and section points of group varieties.Jap. J. Math. 30 (1960), 84-101. Zbl 0109.39602, MR 0155828, 10.4099/jjm1924.30.0_84
Reference: [5] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84 Springer, New York (1982). Zbl 0482.10001, MR 0661047
Reference: [6] Lang, S.: Fundamentals of Diophantine Geometry.Springer, New York (1983). Zbl 0528.14013, MR 0715605
Reference: [7] Merel, L.: Bounds for the torsion of elliptic curves over number fields.Invent. Math. 124 French (1996), 437-449. Zbl 0936.11037, MR 1369424
Reference: [8] Murty, M. R.: Problems in Analytic Number Theory (2nd edition).Graduate Texts in Mathematics 206, Readings in Mathematics Springer, New York (2008). MR 1803093
Reference: [9] Ooe, T., Top, J.: On the Mordell-Weil rank of an abelian variety over a number field.J. Pure Appl. Algebra 58 (1989), 261-265. Zbl 0686.14025, MR 1004606
Reference: [10] Rubin, K., Silverberg, A.: Ranks of elliptic curves.Bull. Am. Math. Soc., New Ser. 39 (2002), 455-474. Zbl 1052.11039, MR 1920278, 10.1090/S0273-0979-02-00952-7
Reference: [11] Rubin, K., Silverberg, A.: Ranks of elliptic curves in families of quadratic twists.Exp. Math. 9 (2000), 583-590. Zbl 0959.11023, MR 1806293, 10.1080/10586458.2000.10504661
Reference: [12] Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory.Publications of the Mathematical Society of Japan 6 Mathematical Society of Japan, Tokyo (1961). Zbl 0112.03502, MR 0125113
Reference: [13] Silverman, J. H.: The Arithmetic of Elliptic Curves (2nd edition).Graduate Texts in Mathematics 106 Springer, New York (2009). MR 2514094, 10.1007/978-0-387-09494-6
Reference: [14] Silverman, J. H.: A lower bound for the canonical height on elliptic curves over abelian extensions.J. Number Theory 104 (2004), 353-372. Zbl 1053.11052, MR 2029512, 10.1016/j.jnt.2003.07.001
Reference: [15] Silverman, J. H.: Representations of integers by binary forms and the rank of the Mordell-Weil group.Invent. Math. 74 (1983), 281-292. Zbl 0525.14012, MR 0723218, 10.1007/BF01394317
.

Files

Files Size Format View
CzechMathJ_64-2014-4_10.pdf 289.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo