Previous |  Up |  Next

Article

Title: On the complexity of some classes of Banach spaces and non-universality (English)
Author: Braga, Bruno M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 1123-1147
Summary lang: English
.
Category: math
.
Summary: These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results. (English)
Keyword: Banach-Saks operator
Keyword: Dunford-Pettis property
Keyword: analytic Radon-Nikodym property
Keyword: complete continuous property
Keyword: Schur property
Keyword: unconditionally converging operator
Keyword: weakly compact operator
Keyword: local structure
Keyword: non-universality
Keyword: $\ell _p$-Baire sum
Keyword: descriptive set theory
Keyword: tree
MSC: 46B20
idZBL: Zbl 06433718
idMR: MR3304802
DOI: 10.1007/s10587-014-0157-y
.
Date available: 2015-02-09T17:48:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144165
.
Reference: [1] Albiac, F., Kalton, N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics 233 Springer, Berlin (2006). MR 2192298
Reference: [2] Argyros, S. A., Dodos, P.: Genericity and amalgamation of classes of Banach spaces.Adv. Math. 209 (2007), 666-748. Zbl 1109.03047, MR 2296312, 10.1016/j.aim.2006.05.013
Reference: [3] Argyros, S. A., Haydon, R. G.: A hereditarily indecomposable $\mathcal{L}_\infty$-space that solves the scalar-plus-compact problem.Acta Math. 206 (2011), 1-54. Zbl 1223.46007, MR 2784662, 10.1007/s11511-011-0058-y
Reference: [4] Bahreini, M., Bator, E., Ghenciu, I.: Complemented subspaces of linear bounded operators.Can. Math. Bull. 55 (2012), 449-461. Zbl 1255.46006, MR 2957262, 10.4153/CMB-2011-097-2
Reference: [5] Beauzamy, B.: Banach-Saks properties and spreading models.Math. Scand. 44 (1979), 357-384. Zbl 0427.46007, MR 0555227, 10.7146/math.scand.a-11818
Reference: [6] Bossard, B.: A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces.Fundam. Math. 172 (2002), 117-152. Zbl 1029.46009, MR 1899225, 10.4064/fm172-2-3
Reference: [7] Bourgain, J., Delbaen, F.: A class of special $\mathcal{L}_\infty$ spaces.Acta Math. 145 (1980), 155-176. MR 0590288, 10.1007/BF02414188
Reference: [8] Diestel, J.: A survey of results related to the Dunford-Pettis property.Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces Contemp. Math. 2 American Mathematical Society (1980), 15-60. Zbl 0571.46013, MR 0621850
Reference: [9] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). Zbl 0855.47016, MR 1342297
Reference: [10] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15 American Mathematical Society, Providence (1977). Zbl 0369.46039, MR 0453964
Reference: [11] Diestel, J., Seifert, C. J.: The Banach-Saks ideal, I. Operators acting on $C(\Omega)$.Commentat. Math. 1 (1978), 109-118. Zbl 0385.46010, MR 0504156
Reference: [12] Dodos, P.: Banach Spaces and Descriptive Set Theory: Selected Topics.Lecture Notes in Mathematics 1993 Springer, Berlin (2010). Zbl 1215.46002, MR 2598479
Reference: [13] Fakhoury, H.: Sur les espaces de Banach ne contenant pas $\ell^1(\mathbb N)$.French Math. Scand. 41 (1977), 277-289. MR 0500085, 10.7146/math.scand.a-11720
Reference: [14] Farnum, N. R.: The Banach-Saks theorem in $C(S)$.Can. J. Math. 26 (1974), 91-97. Zbl 0253.54026, MR 0367636, 10.4153/CJM-1974-009-9
Reference: [15] Girardi, M.: Dentability, trees, and Dunford-Pettis operators on $L_1$.Pac. J. Math. 148 (1991), 59-79 correction ibid. 157 389-394 (1993). MR 1091530, 10.2140/pjm.1991.148.59
Reference: [16] Huang, S.-Z., Neerven, J. M. A. M. van: $B$-convexity, the analytic Radon-Nikodym property, and individual stability of $C_0$-semigroups.J. Math. Anal. Appl. 231 (1999), 1-20. MR 1676753, 10.1006/jmaa.1998.6211
Reference: [17] James, R. C.: Unconditional bases and the Radon-Nikodym property.Stud. Math. 95 (1990), 255-262. Zbl 0744.46010, MR 1060728, 10.4064/sm-95-3-255-262
Reference: [18] James, R. C.: Structures of Banach spaces: Radon-Nikodym and other properties.General Topology and Modern Analysis Proc. Conf., Riverside, 1980 L. F. McAuley, et al. Academic Press, New York (1981), 347-363. MR 0619061
Reference: [19] James, R. C.: Bases and reflexivity of Banach spaces.Ann. Math. (2) 52 (1950), 518-527. Zbl 0039.12202, MR 0039915, 10.2307/1969430
Reference: [20] Johnson, W. B., (eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces. Vol. 1.Elsevier, Amsterdam (2001). MR 1863689
Reference: [21] Kechris, A. S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics 156 Springer, Berlin (1995). Zbl 0819.04002, MR 1321597
Reference: [22] Ostrovskii, M. I.: Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry.Quaest. Math. 17 (1994), 259-319. MR 1290670, 10.1080/16073606.1994.9631766
Reference: [23] Partington, J. R.: On the Banach-Saks property.Math. Proc. Camb. Philos. Soc. 82 (1977), 369-374. Zbl 0368.46018, MR 0448036, 10.1017/S0305004100054025
Reference: [24] Pełczyński, A.: Universal bases.Stud. Math. 32 (1969), 247-268. Zbl 0185.37401, MR 0241954, 10.4064/sm-32-3-247-268
Reference: [25] Pełczyński, A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648. Zbl 0107.32504, MR 0149295
Reference: [26] Puglisi, D.: The position of $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$.Glasg. Math. J. 56 (2014), 409-417. Zbl 1296.46018, MR 3187907
Reference: [27] Rosenthal, H. P.: A characterization of Banach spaces containing $\ell^1$.Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. MR 0358307, 10.1073/pnas.71.6.2411
Reference: [28] Rosenthal, H. P.: On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu$.Acta Math. 124 (1970), 205-248. MR 0257721, 10.1007/BF02394572
Reference: [29] Schlumprech, Th.: Notes on Descriptive Set Theory and Applications to Banach Spaces.Class notes for Reading Course in Spring/Summer (2008).
Reference: [30] Tanbay, B.: Direct sums and the Schur property.Turk. J. Math. 22 (1998), 349-354. Zbl 0923.46019, MR 1675081
.

Files

Files Size Format View
CzechMathJ_64-2014-4_18.pdf 386.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo