Previous |  Up |  Next

Article

Title: On the global regularity of $N$-dimensional generalized Boussinesq system (English)
Author: Yamazaki, Kazuo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 2
Year: 2015
Pages: 109-133
Summary lang: English
.
Category: math
.
Summary: We study the $N$-dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three. (English)
Keyword: Boussinesq system
Keyword: global regularity
Keyword: regularity criteria
Keyword: Besov space
MSC: 35B65
MSC: 35Q30
MSC: 35Q35
MSC: 35Q86
MSC: 76D03
idZBL: Zbl 06433675
idMR: MR3320341
DOI: 10.1007/s10492-015-0087-5
.
Date available: 2015-03-09T17:26:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144166
.
Reference: [1] Adhikari, D., Cao, C., Wu, J.: The 2-D Boussinesq equations with vertical viscosity and vertical diffusivity.J. Differ. Equations 249 (2010), 1078-1088. MR 2652164, 10.1016/j.jde.2010.03.021
Reference: [2] Adhikari, D., Cao, C., Wu, J.: Global regularity results for the 2-D Boussinesq equations with vertical dissipation.J. Differ. Equations 251 (2011), 1637-1655. MR 2813893, 10.1016/j.jde.2011.05.027
Reference: [3] Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities.Commun. Partial Differ. Equations 5 (1980), 773-789. Zbl 0437.35071, MR 0579997, 10.1080/03605308008820154
Reference: [4] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations.Indiana Univ. Math. J. 57 (2008), 2643-2661. Zbl 1159.35053, MR 2482994, 10.1512/iumj.2008.57.3719
Reference: [5] Cao, C., Titi, E. S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor.Arch. Ration. Mech. Anal. 202 (2011), 919-932. Zbl 1256.35051, MR 2854673, 10.1007/s00205-011-0439-6
Reference: [6] Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations.J. Differ. Equations 248 (2010), 2263-2274. Zbl 1190.35046, MR 2595721, 10.1016/j.jde.2009.09.020
Reference: [7] Cao, C., Wu, J.: Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation.Arch. Ration. Mech. Anal. 208 (2013), 985-1004. Zbl 1284.35140, MR 3048599, 10.1007/s00205-013-0610-3
Reference: [8] Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms.Adv. Math. 203 (2006), 497-513. Zbl 1100.35084, MR 2227730, 10.1016/j.aim.2005.05.001
Reference: [9] Chae, D., Nam, H.-S.: Local existence and blow-up criterion for the Boussinesq equations.Proc. R. Soc. Edinb., Sect. A 127 (1997), 935-946. Zbl 0882.35096, MR 1475638, 10.1017/S0308210500026810
Reference: [10] Chemin, J.-Y.: Perfect Incompressible Fluids.Oxford Lecture Series in Mathematics and Its Applications 14 Clarendon Press, Oxford (1998). Zbl 0927.76002, MR 1688875
Reference: [11] Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications.Geom. Funct. Anal. 22 (2012), 1289-1321. Zbl 1256.35078, MR 2989434, 10.1007/s00039-012-0172-9
Reference: [12] Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations.Commun. Math. Phys. 249 (2004), 511-528. Zbl 1309.76026, MR 2084005, 10.1007/s00220-004-1055-1
Reference: [13] Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two.Math. Models Methods Appl. Sci. 21 (2011), 421-457. Zbl 1223.35249, MR 2782720, 10.1142/S0218202511005106
Reference: [14] Fan, J., Nakamura, G., Wang, H.: Blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 3436-3442. Zbl 1243.35137, MR 2891178, 10.1016/j.na.2012.01.008
Reference: [15] Hmidi, T.: On a maximum principle and its application to logarithmically critical Boussinesq system.Anal. PDE 4 (2011), 247-284. MR 2859855, 10.2140/apde.2011.4.247
Reference: [16] Hmidi, T., Keraani, S.: On the global well-posedness of the Boussinesq system with zero viscosity.Indiana Univ. Math. J. 58 (2009), 1591-1618. Zbl 1178.35303, MR 2542974, 10.1512/iumj.2009.58.3590
Reference: [17] Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation.J. Differ. Equations 249 (2010), 2147-2174. Zbl 1200.35228, MR 2718654, 10.1016/j.jde.2010.07.008
Reference: [18] Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler-Boussinesq system with critical dissipation.Commun. Partial Differ. Equations 36 (2011), 420-445. Zbl 1284.76089, MR 2763332, 10.1080/03605302.2010.518657
Reference: [19] Hou, T., Li, C.: Global well-posedness of the viscous Boussinesq equations.Discrete Contin. Dyn. Syst. 12 (2005), 1-12. Zbl 1274.76185, MR 2121245, 10.3934/dcds.2005.12.1
Reference: [20] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations.Commun. Pure Appl. Math. 41 (1988), 891-907. Zbl 0671.35066, MR 0951744, 10.1002/cpa.3160410704
Reference: [21] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction.J. Math. Phys. 48 065203, 10 pages (2007). Zbl 1144.81373, MR 2337002, 10.1063/1.2395919
Reference: [22] Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean.Courant Lecture Notes in Mathematics 9 AMS, Providence; Courant Institute of Mathematical Sciences, New York (2003). Zbl 1278.76004, MR 1965452
Reference: [23] Majda, A. J., Bertozzi, A. L.: Vorticity and Incompressible Flow.Cambridge Texts in Applied Mathematics 27 Cambridge University Press, Cambridge (2002). Zbl 0983.76001, MR 1867882
Reference: [24] Miao, C., Zheng, X.: On the global well-posedness for the Boussinesq system with horizontal dissipation.Commun. Math. Phys. 321 (2013), 33-67. Zbl 1307.35233, MR 3089663, 10.1007/s00220-013-1721-2
Reference: [25] Moffatt, H. K.: Some remarks on topological fluid mechanics.An Introduction to the Geometry and Topology of Fluid Flows R. L. Ricca Proc. Pedag. Workshop, Cambridge, 2000. Kluwer Academic Publishers Dordrecht, NATO Sci. Ser. II, Math. Phys. Chem. 47 (2001), 3-10. Zbl 1100.76500, MR 1999078
Reference: [26] Qiu, H., Du, Y., Yao, Z.: Serrin-type blow-up criteria for 3D Boussinesq equations.Appl. Anal. 89 (2010), 1603-1613. MR 2773338, 10.1080/00036811.2010.492505
Reference: [27]\looseness1 Qiu, H., Du, Y., Yao, Z.: A blow-up criterion for 3D Boussinesq equations in Besov spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 806-815. Zbl 1193.76025, MR 2653751, 10.1016/j.na.2010.04.021
Reference: [28] Vasseur, A.: Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity.Appl. Math., Praha 54 (2009), 47-52. Zbl 1212.35354, MR 2476020, 10.1007/s10492-009-0003-y
Reference: [29] Wu, J.: The generalized MHD equations.J. Differ. Equations 195 (2003), 284-312. MR 2016814, 10.1016/j.jde.2003.07.007
Reference: [30] Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations.J. Math. Fluid Mech. 13 (2011), 295-305. Zbl 1270.35371, MR 2805867, 10.1007/s00021-009-0017-y
Reference: [31] Xiang, Z.: The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces.Math. Methods Appl. Sci. 34 (2011), 360-372. Zbl 1205.35235, MR 2779955, 10.1002/mma.1367
Reference: [32] Xiaofeng, L., Wang, M., Zhang, Z.: Local well-posedness and blowup criterion of the Boussinesq equations in critical Besov spaces.J. Math. Fluid. Mech. 12 (2010), 280-292. Zbl 1195.76136, MR 2645152, 10.1007/s00021-008-0286-x
Reference: [33] Xu, X.: Global regularity of solutions of 2D Boussinesq equations with fractional diffusion.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 677-681. Zbl 1177.76024, MR 2579335, 10.1016/j.na.2009.07.008
Reference: [34] Yamazaki, K.: On the regularity criteria of a surface quasi-geostrophic equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4950-4956. Zbl 1242.35075, MR 2927558, 10.1016/j.na.2012.04.010
Reference: [35] Yamazaki, K.: Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems.J. Math. Phys. 54 011502, 16 pages (2013). Zbl 1290.35191, MR 3059861, 10.1063/1.4773833
.

Files

Files Size Format View
AplMat_60-2015-2_1.pdf 336.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo