Previous |  Up |  Next

Article

Title: Applications of approximate gradient schemes for nonlinear parabolic equations (English)
Author: Eymard, Robert
Author: Handlovičová, Angela
Author: Herbin, Raphaèle
Author: Mikula, Karol
Author: Stašová, Olga
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 2
Year: 2015
Pages: 135-156
Summary lang: English
.
Category: math
.
Summary: We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion equations. (English)
Keyword: regularized Perona-Malik equation
Keyword: gradient schemes
MSC: 35K59
MSC: 65M08
MSC: 65M12
idZBL: Zbl 06433676
idMR: MR3320342
DOI: 10.1007/s10492-015-0088-4
.
Date available: 2015-03-09T17:29:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144168
.
Reference: [1] Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media.J. Comput. Phys. 127 (1996), 2-14. Zbl 0859.76048, 10.1006/jcph.1996.0154
Reference: [2] Amann, H.: Time-delayed Perona-{M}alik type problems.Acta Math. Univ. Comen., New Ser. 76 (2007), 15-38. Zbl 1132.68067, MR 2331050
Reference: [3] Bartels, S., Prohl, A.: Stable discretization of scalar and constrained vectorial Perona-{M}alik equation.Interfaces Free Bound. 9 (2007), 431-453. Zbl 1147.35011, MR 2358212
Reference: [4] Bellettini, G., Novaga, M., Paolini, M., Tornese, C.: Convergence of discrete schemes for the Perona-{M}alik equation.J. Differ. Equations 245 (2008), 892-924. Zbl 1155.35002, MR 2427400, 10.1016/j.jde.2008.05.003
Reference: [5] Cancès, C., Gallouët, T.: On the time continuity of entropy solutions.J. Evol. Equ. 11 (2011), 43-55. Zbl 1232.35029, MR 2780572, 10.1007/s00028-010-0080-0
Reference: [6] Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion.SIAM J. Numer. Anal. 29 (1992), 182-193. Zbl 0746.65091, MR 1149092, 10.1137/0729012
Reference: [7] Čunderlík, R., Mikula, K., Tunega, M.: Nonlinear diffusion filtering of data on the Earth's surface.J. Geod. 87 (2013), 143-160. 10.1007/s00190-012-0587-y
Reference: [8] Drblíková, O., Handlovičová, A., Mikula, K.: Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion.Appl. Numer. Math. 59 (2009), 2548-2570. Zbl 1172.65052, MR 2553154, 10.1016/j.apnum.2009.05.010
Reference: [9] Drblíková, O., Mikula, K.: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing.SIAM J. Numer. Anal. 46 (2007), 37-60. MR 2377254, 10.1137/070685038
Reference: [10] Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods.Math. Models Methods Appl. Sci. 20 (2010), 265-295. Zbl 1191.65142, MR 2649153, 10.1142/S0218202510004222
Reference: [11] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods.P. G. Ciarlet et al. Handbook of numerical analysis. Vol. 7: Solution of equations in $\mathbb R^n$ (Part 3) Techniques of scientific computing (Part 3) North Holland/Elsevier, Amsterdam (2000), 713-1020. Zbl 0981.65095, MR 1804748
Reference: [12] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes {SUSHI}: a scheme using stabilization and hybrid interfaces.IMA J. Numer. Anal. 30 (2010), 1009-1043. Zbl 1202.65144, MR 2727814, 10.1093/imanum/drn084
Reference: [13] Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media.ESAIM, Math. Model. Numer. Anal. 46 (2012), 265-290. Zbl 1271.76324, MR 2855643, 10.1051/m2an/2011040
Reference: [14] Eymard, R., Herbin, R.: Gradient scheme approximations for diffusion problems.J. Fořt et al. Finite Volumes for Complex Applications 6: Problems and Perspectives. Vol. 1, 2. Conf. Proc. Proceedings in Mathematics 4 Springer, Heidelberg (2011), 439-447. Zbl 1246.65205, MR 2882320
Reference: [15] Eymard, R., Herbin, R., Latché, J. C.: Convergence analysis of a colocated finite volume scheme for the incompressible Navier-{S}tokes equations on general 2D or 3D meshes.SIAM J. Numer. Anal. 45 (2007), 1-36. Zbl 1173.76028, MR 2285842, 10.1137/040613081
Reference: [16] Eymard, R., Mercier, S., Prignet, A.: An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes.J. Comput. Appl. Math. 222 (2008), 293-323. Zbl 1158.65008, MR 2474631, 10.1016/j.cam.2007.10.053
Reference: [17] Handlovičová, A., Krivá, Z.: Error estimates for finite volume scheme for Perona-{M}alik equation.Acta Math. Univ. Comen., New Ser. 74 (2005), 79-94. Zbl 1108.35083, MR 2154399
Reference: [18] Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution.Numer. Math. 93 (2003), 675-695. Zbl 1065.65105, MR 1961884, 10.1007/s002110100374
Reference: [19] Mikula, K., Ramarosy, N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing.Numer. Math. 89 (2001), 561-590. Zbl 1013.65094, MR 1864431, 10.1007/PL00005479
Reference: [20] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 629-639. 10.1109/34.56205
Reference: [21] Weickert, J.: Coherence-enhancing diffusion filtering.Int. J. Comput. Vis. 31 (1999), 111-127. 10.1023/A:1008009714131
.

Files

Files Size Format View
AplMat_60-2015-2_2.pdf 856.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo