Previous |  Up |  Next

Article

Title: Tail probability and singularity of Laplace-Stieltjes transform of a Pareto type random variable (English)
Author: Nakagawa, Kenji
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 2
Year: 2015
Pages: 157-184
Summary lang: English
.
Category: math
.
Summary: We give a sufficient condition for a non-negative random variable $X$ to be of Pareto type by investigating the Laplace-Stieltjes transform of the cumulative distribution function. We focus on the relation between the singularity at the real point of the axis of convergence and the asymptotic decay of the tail probability. For the proof of our theorems, we apply Graham-Vaaler's complex Tauberian theorem. As an application of our theorems, we consider the asymptotic decay of the stationary distribution of an M/G/1 type Markov chain. (English)
Keyword: tail probability
Keyword: Pareto type
Keyword: Laplace-Stieltjes transform
Keyword: Tauberian theorem
MSC: 30D10
MSC: 40E05
MSC: 42A38
MSC: 60F99
idZBL: Zbl 06433677
idMR: MR3320343
DOI: 10.1007/s10492-015-0089-3
.
Date available: 2015-03-09T17:30:42Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144169
.
Reference: [1] Bingham, N. H., Doney, R. A.: Asymptotic properties of supercritical branching processes. I: The Galton-Watson process.Adv. Appl. Probab. 6 (1974), 711-731. Zbl 0297.60044, MR 0362525, 10.2307/1426188
Reference: [2] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation.Encyclopedia of Mathematics and Its Applications 27 Cambridge University Press, Cambridge (1987). Zbl 0617.26001, MR 0898871
Reference: [3] Falkenberg, E.: On the asymptotic behaviour of the stationary distribution of Markov chains of M/G/1-type.Commun. Stat., Stochastic Models 10 (1994), 75-97. Zbl 0791.60087, MR 1259855, 10.1080/15326349408807289
Reference: [4] Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II. 2nd ed.Wiley Series in Probability and Mathematical Statistics John Wiley, New York (1971). Zbl 0219.60003, MR 0270403
Reference: [5] Graham, S. W., Vaaler, J. D.: A class of extremal functions for the Fourier transform.Trans. Am. Math. Soc. 265 (1981), 283-302. Zbl 0483.42007, MR 0607121, 10.1090/S0002-9947-1981-0607121-1
Reference: [6] Ikehara, S.: An extension of Landau's theorem in the analytic theory of numbers.J. of Math. Phys. 10 (1931), 1-12. 10.1002/sapm19311011
Reference: [7] Korevaar, J.: Tauberian Theory. A Century of Developments.Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). Zbl 1056.40002, MR 2073637, 10.1007/978-3-662-10225-1
Reference: [8] Moriguchi, K., al., et: A Table of Mathematical Formulas II.Iwanami Shoten (1957), Japanese.
Reference: [9] Nakagawa, K.: On the exponential decay rate of the tail of a discrete probability distribution.Stoch. Models 20 (2004), 31-42. Zbl 1035.60011, MR 2036294, 10.1081/STM-120028389
Reference: [10] Nakagawa, K.: Tail probability of random variable and Laplace transform.Appl. Anal. 84 (2005), 499-522. Zbl 1085.44002, MR 2151276, 10.1080/00036810410001724436
Reference: [11] Nakagawa, K.: Application of Tauberian theorem to the exponential decay of the tail probability of a random variable.IEEE Trans. Inf. Theory 53 (2007), 3239-3249. MR 2417689, 10.1109/TIT.2007.903114
Reference: [12] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157
Reference: [13] Widder, D. V.: The Laplace Transform.Princeton Mathematical Series, v. 6 Princeton University Press, Princenton (1941). Zbl 0063.08245, MR 0005923
.

Files

Files Size Format View
AplMat_60-2015-2_3.pdf 344.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo