Previous |  Up |  Next

Article

Title: The ${\mathcal L}^m_n$-propositional calculus (English)
Author: Gallardo, Carlos
Author: Ziliani, Alicia
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 11-33
Summary lang: English
.
Category: math
.
Summary: T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the ${\mathcal L}^{m}_{n}$-propositional calculus, denoted by ${\ell ^{m}_{n}}$, is introduced in terms of the binary connectives $\to $ (implication), $\twoheadrightarrow $ (standard implication), $\wedge $ (conjunction), $\vee $ (disjunction) and the unary ones $f$ (negation) and $D_{i}$, $1\leq i\leq n-1$ (generalized Moisil operators). It is proved that ${\ell ^{m}_{n}}$ belongs to the class of standard systems of implicative extensional propositional calculi. Besides, it is shown that the definitions of $L^{m}_{n}$-algebra and ${\ell ^{m}_{n}}$-algebra are equivalent. Finally, the completeness theorem for ${\ell ^{m}_{n}}$ is obtained. (English)
Keyword: Łukasiewicz algebra of order $n$
Keyword: $m$-generalized Łukasiewicz algebra of order $n$
Keyword: equationally definable principal congruences
Keyword: implicative extensional propositional calculus
Keyword: completeness theorem
MSC: 03B60
MSC: 03G10
MSC: 06D99
idZBL: Zbl 06433695
idMR: MR3324416
DOI: 10.21136/MB.2015.144176
.
Date available: 2015-03-09T17:37:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144176
.
Reference: [1] Almada, T., Carvalho, J. Vaz de: A generalization of the Łukasiewicz algebras.Stud. Log. 69 329-338 (2001). MR 1874418, 10.1023/A:1013846725213
Reference: [2] Berman, J.: Distributive lattices with an additional unary operation.Aequationes Math. 16 165-171 (1977). Zbl 0395.06007, MR 0480238, 10.1007/BF01836429
Reference: [3] Blyth, T. S., Varlet, J. C.: Ockham Algebras.Oxford Science Publications Oxford University Press, Oxford (1994). Zbl 0835.06011, MR 1315526
Reference: [4] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras.Annals of Discrete Mathematics 49 North-Holland, Amsterdam (1991). Zbl 0726.06007, MR 1112790
Reference: [5] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78 Springer, New York (1981). Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3
Reference: [6] Cignoli, R.: Moisil Algebras.Notas de Lógica Mathemática 27 Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca (1970). Zbl 0212.31701, MR 0345884
Reference: [7] Figallo, A. V., Gallardo, C., Ziliani, A.: Weak implication on generalized Łukasiewicz algebras of order $n$.Bull. Sect. Log., Univ. Łód'z, Dep. Log. 39 187-198 (2010). Zbl 1286.03180, MR 2817230
Reference: [8] Maronna, R.: A characterization of Morgan lattices.Port. Math. 23 169-171 (1964). Zbl 0133.27102, MR 0188119
Reference: [9] Rasiowa, H.: An Algebraic Approach to Non-Classical Logics.Studies in Logic and the Foundations of Mathematics 78 North-Holland Publishing, Amsterdam; Elsevier Publishing, New York (1974). Zbl 0299.02069, MR 0446968
Reference: [10] Sholander, M.: Postulates for distributive lattices.Can. J. Math. 3 28-30 (1951). Zbl 0042.02704, MR 0038942, 10.4153/CJM-1951-003-5
Reference: [11] Urquhart, A.: Distributive lattices with a dual homomorphic operation.Stud. Log. 38 201-209 (1979). Zbl 0425.06008, MR 0544616, 10.1007/BF00370442
Reference: [12] Carvalho, J. Vaz de: On the variety of $m$-generalized Łukasiewicz algebras of order $n$.Stud. Log. 94 291-305 (2010). MR 2602577, 10.1007/s11225-010-9236-8
.

Files

Files Size Format View
MathBohem_140-2015-1_2.pdf 320.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo