Title:
|
The ${\mathcal L}^m_n$-propositional calculus (English) |
Author:
|
Gallardo, Carlos |
Author:
|
Ziliani, Alicia |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
11-33 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the ${\mathcal L}^{m}_{n}$-propositional calculus, denoted by ${\ell ^{m}_{n}}$, is introduced in terms of the binary connectives $\to $ (implication), $\twoheadrightarrow $ (standard implication), $\wedge $ (conjunction), $\vee $ (disjunction) and the unary ones $f$ (negation) and $D_{i}$, $1\leq i\leq n-1$ (generalized Moisil operators). It is proved that ${\ell ^{m}_{n}}$ belongs to the class of standard systems of implicative extensional propositional calculi. Besides, it is shown that the definitions of $L^{m}_{n}$-algebra and ${\ell ^{m}_{n}}$-algebra are equivalent. Finally, the completeness theorem for ${\ell ^{m}_{n}}$ is obtained. (English) |
Keyword:
|
Łukasiewicz algebra of order $n$ |
Keyword:
|
$m$-generalized Łukasiewicz algebra of order $n$ |
Keyword:
|
equationally definable principal congruences |
Keyword:
|
implicative extensional propositional calculus |
Keyword:
|
completeness theorem |
MSC:
|
03B60 |
MSC:
|
03G10 |
MSC:
|
06D99 |
idZBL:
|
Zbl 06433695 |
idMR:
|
MR3324416 |
DOI:
|
10.21136/MB.2015.144176 |
. |
Date available:
|
2015-03-09T17:37:04Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144176 |
. |
Reference:
|
[1] Almada, T., Carvalho, J. Vaz de: A generalization of the Łukasiewicz algebras.Stud. Log. 69 329-338 (2001). MR 1874418, 10.1023/A:1013846725213 |
Reference:
|
[2] Berman, J.: Distributive lattices with an additional unary operation.Aequationes Math. 16 165-171 (1977). Zbl 0395.06007, MR 0480238, 10.1007/BF01836429 |
Reference:
|
[3] Blyth, T. S., Varlet, J. C.: Ockham Algebras.Oxford Science Publications Oxford University Press, Oxford (1994). Zbl 0835.06011, MR 1315526 |
Reference:
|
[4] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras.Annals of Discrete Mathematics 49 North-Holland, Amsterdam (1991). Zbl 0726.06007, MR 1112790 |
Reference:
|
[5] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78 Springer, New York (1981). Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3 |
Reference:
|
[6] Cignoli, R.: Moisil Algebras.Notas de Lógica Mathemática 27 Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca (1970). Zbl 0212.31701, MR 0345884 |
Reference:
|
[7] Figallo, A. V., Gallardo, C., Ziliani, A.: Weak implication on generalized Łukasiewicz algebras of order $n$.Bull. Sect. Log., Univ. Łód'z, Dep. Log. 39 187-198 (2010). Zbl 1286.03180, MR 2817230 |
Reference:
|
[8] Maronna, R.: A characterization of Morgan lattices.Port. Math. 23 169-171 (1964). Zbl 0133.27102, MR 0188119 |
Reference:
|
[9] Rasiowa, H.: An Algebraic Approach to Non-Classical Logics.Studies in Logic and the Foundations of Mathematics 78 North-Holland Publishing, Amsterdam; Elsevier Publishing, New York (1974). Zbl 0299.02069, MR 0446968 |
Reference:
|
[10] Sholander, M.: Postulates for distributive lattices.Can. J. Math. 3 28-30 (1951). Zbl 0042.02704, MR 0038942, 10.4153/CJM-1951-003-5 |
Reference:
|
[11] Urquhart, A.: Distributive lattices with a dual homomorphic operation.Stud. Log. 38 201-209 (1979). Zbl 0425.06008, MR 0544616, 10.1007/BF00370442 |
Reference:
|
[12] Carvalho, J. Vaz de: On the variety of $m$-generalized Łukasiewicz algebras of order $n$.Stud. Log. 94 291-305 (2010). MR 2602577, 10.1007/s11225-010-9236-8 |
. |