Previous |  Up |  Next

Article

Title: Multiplicatively idempotent semirings (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Author: Švrček, Filip
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 35-42
Summary lang: English
.
Category: math
.
Summary: Semirings are modifications of unitary rings where the additive reduct does not form a group in general, but only a monoid. We characterize multiplicatively idempotent semirings and Boolean rings as semirings satisfying particular identities. Further, we work with varieties of enriched semirings. We show that the variety of enriched multiplicatively idempotent semirings differs from the join of the variety of enriched unitary Boolean rings and the variety of enriched bounded distributive lattices. We get a characterization of this join. (English)
Keyword: semiring
Keyword: commutative semiring
Keyword: multiplicatively idempotent semiring
Keyword: semiring of characteristic 2
Keyword: simple semiring
Keyword: unitary Boolean ring
Keyword: bounded distributive lattice
MSC: 06E20
MSC: 16Y60
idZBL: Zbl 06433696
idMR: MR3324417
DOI: 10.21136/MB.2015.144177
.
Date available: 2015-03-09T17:37:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144177
.
Reference: [1] Chajda, I., Švrček, F.: Lattice-like structures derived from rings.Contributions to General Algebra 20, Proceedings of the 81st Workshop on General Algebra Salzburg, Austria Johannes Heyn Klagenfurt (2012), 11-18 J. Czermak et al. Zbl 1321.06011, MR 2908430
Reference: [2] Chajda, I., Švrček, F.: The rings which are Boolean.Discuss. Math., Gen. Algebra Appl. 31 (2011), 175-184. Zbl 1262.06005, MR 2953910, 10.7151/dmgaa.1181
Reference: [3] Clouse, D. J., Guzmán, F.: The dual geometry of Boolean semirings.Algebra Univers. 64 (2010), 231-249. Zbl 1217.06007, MR 2781078, 10.1007/s00012-011-0102-y
Reference: [4] Golan, J. S.: Semirings and Affine Equations over Them: Theory and Applications.Mathematics and Its Applications 556 Kluwer Academic Publishers, Dordrecht (2003). Zbl 1042.16038, MR 1997126
Reference: [5] Golan, J. S.: Semirings and Their Applications.Kluwer Academic Publishers Dordrecht (1999). Zbl 0947.16034, MR 1746739
Reference: [6] Grätzer, G., Lakser, H., Płonka, J.: Joins and direct products of equational classes.Can. Math. Bull. 12 (1969), 741-744. Zbl 0188.04903, MR 0276160, 10.4153/CMB-1969-095-x
Reference: [7] Guzmán, F.: The variety of Boolean semirings.J. Pure Appl. Algebra 78 (1992), 253-270. Zbl 0770.16020, MR 1163278, 10.1016/0022-4049(92)90108-R
Reference: [8] Jedlička, P.: The rings which are Boolean, Part II.Acta Univ. Carol., Math. Phys. 53 (2012), 73-75. MR 3099402
.

Files

Files Size Format View
MathBohem_140-2015-1_3.pdf 231.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo