Previous |  Up |  Next

Article

Title: Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $ (English)
Author: Krishna, Deekonda Vamshee
Author: Ramreddy, Thoutreddy
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 1
Year: 2015
Pages: 43-52
Summary lang: English
.
Category: math
.
Summary: The objective of this paper is to obtain sharp upper bound for the function $f$ for the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$, when it belongs to the class of functions whose derivative has a positive real part of order $\alpha $ $(0\leq \alpha <1)$, denoted by $ RT(\alpha )$. Further, an upper bound for the inverse function of $f$ for the nonlinear functional (also called the second Hankel functional), denoted by $|t_{2}t_{4}-t_{3}^{2}|$, was determined when it belongs to the same class of functions, using Toeplitz determinants. (English)
Keyword: analytic function
Keyword: upper bound
Keyword: second Hankel functional
Keyword: positive real function
Keyword: Toeplitz determinant
MSC: 30C45
MSC: 30C50
idZBL: Zbl 06433697
idMR: MR3324418
DOI: 10.21136/MB.2015.144178
.
Date available: 2015-03-09T17:39:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144178
.
Reference: [1] Abubaker, A., Darus, M.: Hankel determinant for a class of analytic functions involving a generalized linear differential operator.Int. J. Pure Appl. Math. 69 429-435 (2011). Zbl 1220.30011, MR 2847841
Reference: [2] Ali, R. M.: Coefficients of the inverse of strongly starlike functions.Bull. Malays. Math. Sci. Soc. (2) 26 63-71 (2003). Zbl 1185.30010, MR 2055766
Reference: [3] Ehrenborg, R.: The Hankel determinant of exponential polynomials.Am. Math. Mon. 107 557-560 (2000). Zbl 0985.15006, MR 1767065, 10.2307/2589352
Reference: [4] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications.Chelsea Publishing Co., New York (1984). Zbl 0611.47018, MR 0890515
Reference: [5] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 619-625 (2007). Zbl 1137.30308, MR 2370200
Reference: [6] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part.J. Inequal. Pure Appl. Math. (electronic only) 7 Article 50, 5 pages (2006). Zbl 1134.30310, MR 2221331
Reference: [7] Layman, J. W.: The Hankel transform and some of its properties.J. Integer Seq. (electronic only) 4 Article 01.1.5, 11 pages (2001). Zbl 0978.15022, MR 1848942
Reference: [8] MacGregor, T. H.: Functions whose derivative has a positive real part.Trans. Am. Math. Soc. 104 532-537 (1962). Zbl 0106.04805, MR 0140674, 10.1090/S0002-9947-1962-0140674-7
Reference: [9] Mishra, A. K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by fractional derivative.Int. J. Math. Math. Sci. 2008 Article ID 153280, 10 pages (2008). Zbl 1158.30308, MR 2392999
Reference: [10] Murugusundaramoorthy, G., Magesh, N.: Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant.Bull. Math. Anal. Appl. 1 85-89 (2009). Zbl 1312.30024, MR 2578118
Reference: [11] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of areally mean $p$-valent functions.Trans. Am. Math. Soc. 223 337-346 (1976). Zbl 0346.30012, MR 0422607
Reference: [12] Noor, K. I.: Hankel determinant problem for the class of functions with bounded boundary rotation.Rev. Roum. Math. Pures Appl. 28 731-739 (1983). Zbl 0524.30008, MR 0725316
Reference: [13] Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen.Studia Mathematica/Mathematische Lehrbücher. Band 25 Vandenhoeck & Ruprecht, Göttingen (1975). Zbl 0298.30014, MR 0507768
Reference: [14] Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory.American Mathematical Society Colloquium Publications 54 AMS, Providence (2005). Zbl 1082.42020, MR 2105088, 10.1090/coll/054.2
.

Files

Files Size Format View
MathBohem_140-2015-1_4.pdf 244.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo