Title:
|
Maximal upper asymptotic density of sets of integers with missing differences from a given set (English) |
Author:
|
Pandey, Ram Krishna |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
53-69 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M$ be a given nonempty set of positive integers and $S$ any set of nonnegative integers. Let $\overline \delta (S)$ denote the upper asymptotic density of $S$. We consider the problem of finding \[\mu (M):=\sup _{S}\overline \delta (S),\] where the supremum is taken over all sets $S$ satisfying that for each $a,b\in S$, $a-b \notin M.$ In this paper we discuss the values and bounds of $\mu (M)$ where $M = \{a,b,a+nb\}$ for all even integers and for all sufficiently large odd integers $n$ with $a<b$ and $\gcd (a,b)=1.$ (English) |
Keyword:
|
upper asymptotic density |
Keyword:
|
maximal density |
MSC:
|
11B05 |
idZBL:
|
Zbl 06433698 |
idMR:
|
MR3324419 |
DOI:
|
10.21136/MB.2015.144179 |
. |
Date available:
|
2015-03-09T17:40:37Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144179 |
. |
Reference:
|
[1] Cantor, D. G., Gordon, B.: Sequences of integers with missing differences.J. Comb. Theory, Ser. A 14 281-287 (1973). Zbl 0277.10043, MR 0371849, 10.1016/0097-3165(73)90003-4 |
Reference:
|
[2] Gupta, S.: Sets of integers with missing differences.J. Comb. Theory, Ser. A 89 Article ID jcta.1999.3003, 55-69 (2000). Zbl 0956.11006, MR 1736136, 10.1006/jcta.1999.3003 |
Reference:
|
[3] Gupta, S., Tripathi, A.: Density of $M$-sets in arithmetic progression.Acta Arith. 89 255-257 (1999). Zbl 0932.11009, MR 1691854, 10.4064/aa-89-3-255-257 |
Reference:
|
[4] Haralambis, N. M.: Sets of integers with missing differences.J. Comb. Theory, Ser. A 23 22-33 (1977). Zbl 0359.10047, MR 0453689, 10.1016/0097-3165(77)90076-0 |
Reference:
|
[5] Liu, D. D., Zhu, X.: Fractional chromatic number and circular chromatic number for distance graphs with large clique size.J. Graph Theory 47 129-146 (2004). MR 2082743, 10.1002/jgt.20020 |
Reference:
|
[6] Liu, D. D., Zhu, X.: Fractional chromatic number of distance graphs generated by two-interval sets.Eur. J. Comb. 29 1733-1743 (2008). Zbl 1246.05058, MR 2431764, 10.1016/j.ejc.2007.09.007 |
Reference:
|
[7] Motzkin, T. S.: Unpublished problem collection.. |
Reference:
|
[8] Pandey, R. K., Tripathi, A.: A note on a problem of Motzkin regarding density of integral sets with missing differences.J. Integer Seq. (electronic only) 14 Article 11.6.3, 8 pages (2011). MR 2811219 |
Reference:
|
[9] Pandey, R. K., Tripathi, A.: On the density of integral sets with missing differences from sets related to arithmetic progressions.J. Number Theory 131 634-647 (2011). Zbl 1229.11044, MR 2753268, 10.1016/j.jnt.2010.09.013 |
Reference:
|
[10] Pandey, R. K., Tripathi, A.: On the density of integral sets with missing differences.{Combinatorial Number Theory. Proceedings of the 3rd `Integers Conference 2007', Carrollton, USA, 2007} B. Landman et al. Walter de Gruyter, Berlin 157-169 (2009). Zbl 1218.11009, MR 2521959 |
Reference:
|
[11] Rabinowitz, J. H., Proulx, V. K.: An asymptotic approach to the channel assignment problem.SIAM J. Algebraic Discrete Methods 6 507-518 (1985). Zbl 0579.05058, MR 0791178, 10.1137/0606050 |
. |